-
Previous Article
Existence of time-periodic strong solutions to a fluid–structure system
- DCDS Home
- This Issue
-
Next Article
Uniform Strichartz estimates on the lattice
Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, CDMX, Mexico |
$ \begin{equation*} \begin{cases} -\Delta u = \mu_{1}|u|^{2^{*}-2}u+\lambda\alpha |u|^{\alpha-2}|v|^{\beta}u & \text{in }\Omega,\\ -\Delta v = \mu_{2}|v|^{2^{*}-2}v+\lambda\beta |u|^{\alpha}|v|^{\beta-2}v & \text{in }\Omega,\\ u = v = 0 & \text{on }\partial\Omega, \end{cases} \end{equation*} $ |
$ \Omega $ |
$ \mathbb{R}^{N} $ |
$ N\geq 3 $ |
$ 2^{*}: = \frac{2N}{N-2} $ |
$ \mu_{1},\mu_{2}>0 $ |
$ \alpha, \beta>1 $ |
$ \alpha+\beta = 2^{*} $ |
$ \lambda\in\mathbb{R} $ |
$ \Omega $ |
$ \lambda\to -\infty $ |
$ \Omega = \mathbb{R}^N $ |
References:
[1] |
A. Bahri and J.-M. Coron,
On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[2] |
A. Castro, J. Cossio and J. M. Neuberger,
A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27 (1997), 1041-1053.
doi: 10.1216/rmjm/1181071858. |
[3] |
Z. Chen and W. Zou,
Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.
doi: 10.1007/s00205-012-0513-8. |
[4] |
Z. Chen and W. Zou,
Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case, Calc. Var. Partial Differential Equations, 52 (2015), 423-467.
doi: 10.1007/s00526-014-0717-x. |
[5] |
M. Clapp,
Entire nodal solutions to the pure critical exponent problem arising from concentration, J. Differential Equations, 261 (2016), 3042-3060.
doi: 10.1016/j.jde.2016.05.013. |
[6] |
M. Clapp and J. Faya,
Multiple solutions to the Bahri-Coron problem in some domains with nontrivial topology, Proc. Amer. Math. Soc., 141 (2013), 4339-4344.
doi: 10.1090/S0002-9939-2013-12043-5. |
[7] |
M. Clapp and J. Faya, Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, in Contributions to Nonlinear Elliptic Equations and Systems, 99-120, Progr. Nonlinear Differential Equations Appl., 86, Birkhäuser/Springer, Cham, 2015.
doi: 10.1007/978-3-319-19902-3_8. |
[8] |
M. Clapp and F. Pacella,
Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size, Math. Z., 259 (2008), 575-589.
doi: 10.1007/s00209-007-0238-9. |
[9] |
M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differential Equations, 57 (2018), Art. 23, 20 pp.
doi: 10.1007/s00526-017-1283-9. |
[10] |
M. Conti, S. Terracini and G. Verzini,
Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871-888.
doi: 10.1016/S0294-1449(02)00104-X. |
[11] |
M. Conti, S. Terracini and G. Verzini,
Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[12] |
M. del Pino, M. Musso, F. Pacard and A. Pistoia,
Large energy entire solutions for the Yamabe equation, J. Differential Equations, 251 (2011), 2568-2597.
doi: 10.1016/j.jde.2011.03.008. |
[13] |
W. Ding,
On a conformally invariant elliptic equation on $\mathbb{R}^n$, Comm. Math. Phys., 107 (1986), 331-335.
doi: 10.1007/BF01209398. |
[14] |
B. D. Esry, C. H. Greene, J. P. Burke Jr. and J. L. Bohn,
Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.
doi: 10.1103/PhysRevLett.78.3594. |
[15] |
Y. Ge, M. Musso and A. Pistoia,
Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Comm. Partial Differential Equations, 35 (2010), 1419-1457.
doi: 10.1080/03605302.2010.490286. |
[16] |
Y. Guo, B. Li and J. Wei,
Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in $\mathbb{R}^3$, J. Differential Equations, 256 (2014), 3463-3495.
doi: 10.1016/j.jde.2014.02.007. |
[17] |
J. Liu, X. Liu and Z.-Q. Wang,
Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.
doi: 10.1016/j.jde.2016.09.018. |
[18] |
S. Peng, Y.-F. Peng and Z.-Q. Wang, On elliptic systems with Sobolev critical growth, Calc. Var. Partial Differential Equations, 55 (2016), Art. 142, 30 pp.
doi: 10.1007/s00526-016-1091-7. |
[19] |
A. Pistoia and N. Soave,
On Coron's problem for weakly coupled elliptic systems, Proc. Lond. Math. Soc., 116 (2018), 33-67.
doi: 10.1112/plms.12073. |
[20] |
A. Pistoia and H. Tavares,
Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions, J. Fixed Point Theory Appl., 19 (2017), 407-446.
doi: 10.1007/s11784-016-0360-6. |
[21] |
N. Soave,
On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var. Partial Differential Equations, 53 (2015), 689-718.
doi: 10.1007/s00526-014-0764-3. |
[22] |
A. Szulkin,
Ljusternik–Schnirelmann theory on $\mathcal{C}^1$-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 119-139.
doi: 10.1016/S0294-1449(16)30348-1. |
[23] |
E. Timmermans,
Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721.
doi: 10.1103/PhysRevLett.81.5718. |
[24] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
show all references
References:
[1] |
A. Bahri and J.-M. Coron,
On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[2] |
A. Castro, J. Cossio and J. M. Neuberger,
A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27 (1997), 1041-1053.
doi: 10.1216/rmjm/1181071858. |
[3] |
Z. Chen and W. Zou,
Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.
doi: 10.1007/s00205-012-0513-8. |
[4] |
Z. Chen and W. Zou,
Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case, Calc. Var. Partial Differential Equations, 52 (2015), 423-467.
doi: 10.1007/s00526-014-0717-x. |
[5] |
M. Clapp,
Entire nodal solutions to the pure critical exponent problem arising from concentration, J. Differential Equations, 261 (2016), 3042-3060.
doi: 10.1016/j.jde.2016.05.013. |
[6] |
M. Clapp and J. Faya,
Multiple solutions to the Bahri-Coron problem in some domains with nontrivial topology, Proc. Amer. Math. Soc., 141 (2013), 4339-4344.
doi: 10.1090/S0002-9939-2013-12043-5. |
[7] |
M. Clapp and J. Faya, Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, in Contributions to Nonlinear Elliptic Equations and Systems, 99-120, Progr. Nonlinear Differential Equations Appl., 86, Birkhäuser/Springer, Cham, 2015.
doi: 10.1007/978-3-319-19902-3_8. |
[8] |
M. Clapp and F. Pacella,
Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size, Math. Z., 259 (2008), 575-589.
doi: 10.1007/s00209-007-0238-9. |
[9] |
M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differential Equations, 57 (2018), Art. 23, 20 pp.
doi: 10.1007/s00526-017-1283-9. |
[10] |
M. Conti, S. Terracini and G. Verzini,
Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871-888.
doi: 10.1016/S0294-1449(02)00104-X. |
[11] |
M. Conti, S. Terracini and G. Verzini,
Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[12] |
M. del Pino, M. Musso, F. Pacard and A. Pistoia,
Large energy entire solutions for the Yamabe equation, J. Differential Equations, 251 (2011), 2568-2597.
doi: 10.1016/j.jde.2011.03.008. |
[13] |
W. Ding,
On a conformally invariant elliptic equation on $\mathbb{R}^n$, Comm. Math. Phys., 107 (1986), 331-335.
doi: 10.1007/BF01209398. |
[14] |
B. D. Esry, C. H. Greene, J. P. Burke Jr. and J. L. Bohn,
Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.
doi: 10.1103/PhysRevLett.78.3594. |
[15] |
Y. Ge, M. Musso and A. Pistoia,
Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Comm. Partial Differential Equations, 35 (2010), 1419-1457.
doi: 10.1080/03605302.2010.490286. |
[16] |
Y. Guo, B. Li and J. Wei,
Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in $\mathbb{R}^3$, J. Differential Equations, 256 (2014), 3463-3495.
doi: 10.1016/j.jde.2014.02.007. |
[17] |
J. Liu, X. Liu and Z.-Q. Wang,
Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.
doi: 10.1016/j.jde.2016.09.018. |
[18] |
S. Peng, Y.-F. Peng and Z.-Q. Wang, On elliptic systems with Sobolev critical growth, Calc. Var. Partial Differential Equations, 55 (2016), Art. 142, 30 pp.
doi: 10.1007/s00526-016-1091-7. |
[19] |
A. Pistoia and N. Soave,
On Coron's problem for weakly coupled elliptic systems, Proc. Lond. Math. Soc., 116 (2018), 33-67.
doi: 10.1112/plms.12073. |
[20] |
A. Pistoia and H. Tavares,
Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions, J. Fixed Point Theory Appl., 19 (2017), 407-446.
doi: 10.1007/s11784-016-0360-6. |
[21] |
N. Soave,
On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var. Partial Differential Equations, 53 (2015), 689-718.
doi: 10.1007/s00526-014-0764-3. |
[22] |
A. Szulkin,
Ljusternik–Schnirelmann theory on $\mathcal{C}^1$-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 119-139.
doi: 10.1016/S0294-1449(16)30348-1. |
[23] |
E. Timmermans,
Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721.
doi: 10.1103/PhysRevLett.81.5718. |
[24] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[1] |
Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505 |
[2] |
Zhongwei Tang, Huafei Xie. Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (1) : 311-328. doi: 10.3934/cpaa.2020017 |
[3] |
Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4537-4554. doi: 10.3934/dcds.2018198 |
[4] |
Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1369-1393. doi: 10.3934/dcdss.2020077 |
[5] |
Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974 |
[6] |
Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301 |
[7] |
E. N. Dancer, Sanjiban Santra. Existence and multiplicity of solutions for a weakly coupled radial system in a ball. Communications on Pure and Applied Analysis, 2008, 7 (4) : 787-793. doi: 10.3934/cpaa.2008.7.787 |
[8] |
Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592 |
[9] |
Christian Heinemann, Christiane Kraus. Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2565-2590. doi: 10.3934/dcds.2015.35.2565 |
[10] |
Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1 |
[11] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[12] |
N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079 |
[13] |
Guofeng Che, Haibo Chen, Tsung-fang Wu. Bound state positive solutions for a class of elliptic system with Hartree nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3697-3722. doi: 10.3934/cpaa.2020163 |
[14] |
Marcello D'Abbicco. A note on a weakly coupled system of structurally damped waves. Conference Publications, 2015, 2015 (special) : 320-329. doi: 10.3934/proc.2015.0320 |
[15] |
Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009 |
[16] |
Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335 |
[17] |
Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115 |
[18] |
Yayun Li, Yutian Lei. On existence and nonexistence of positive solutions of an elliptic system with coupled terms. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1749-1764. doi: 10.3934/cpaa.2018083 |
[19] |
Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063 |
[20] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]