
-
Previous Article
Isometric embedding with nonnegative Gauss curvature under the graph setting
- DCDS Home
- This Issue
-
Next Article
Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion
Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications
Center for General Education, Ming Chi University of Technology, New Taipei City 24301, Taiwan |
$\left\{ \begin{array}{*{35}{l}} \begin{align} & -{{\left( {{u}^{\prime }}/\sqrt{1-{{u}^{\prime }}^{2}} \right)}^{\prime }}=\lambda f(u),\ \text{in }\left( -L,L \right), \\ & u(-L)=u(L)=0, \\ \end{align} \\\end{array} \right. $ |
$ \lambda >0 $ |
$ L>0 $ |
$ f\in C[0, \infty )\cap C^{2}(0, \infty ) $ |
$ \beta >0 $ |
$ \left( \beta -z\right) f(z)>0 $ |
$ z\neq \beta $ |
$ S_{L} $ |
$ L>0 $ |
$ f(u)/u $ |
$ \subset $ |
$ L>0 $ |
$ f(u)/u $ |
References:
[1] |
R. Bartnik and L. Simon,
Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87 (1982), 131-152.
doi: 10.1007/BF01211061. |
[2] |
D. Butler, R. Shivaji and A. Tuck, S-shaped bifurcation curves for logistic growth and weak Allee effect growth models with grazing on an interior patch, Proceedings of the Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, 15–25, Electron. J. Differ. Equ. Conf., 20, Texas State Univ., San Marcos, TX, 2013. |
[3] |
I. Coelho, C. Corsato, F. Obersnel and P. Omari,
Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621-638.
doi: 10.1515/ans-2012-0310. |
[4] |
C. Corsato, Mathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator, PhD thesis, University of Trieste, 2015. Available at https://www.openstarts.units.it/bitstream/10077/11127/1/PhD_Thesis _Corsato.pdf. |
[5] |
R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. 2: Mainly electromagnetism and matter. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964. |
[6] |
S.-Y. Huang,
Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differential Equations, 264 (2018), 5977-6011.
doi: 10.1016/j.jde.2018.01.021. |
[7] |
S.-Y. Huang,
Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application, Commun. Pure Appl. Anal., 17 (2018), 1271-1294.
doi: 10.3934/cpaa.2018061. |
[8] |
S.-Y. Huang and S.-H. Wang,
An evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity, Taiwanese J. Math., 20 (2016), 639-661.
doi: 10.11650/tjm.20.2016.6563. |
[9] |
S.-Y. Huang, Some proofs in a paper "Bifurcation diagrams of one-dimensional Minkowski-curvature problem and its applications", available from http://mx.nthu.edu.tw/~symbol126sy-huang/Proofs2018. |
[10] |
K.-C. Hung, S.-Y. Huang and S.-H. Wang,
A global bifurcation theorem for a positone multiparameter problem and its application, Discrete Contin. Dyn. Syst., 37 (2017), 5127-5149.
doi: 10.3934/dcds.2017222. |
[11] |
K.-C. Hung and S.-H. Wang,
Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications, Trans. Amer. Math. Soc., 365 (2013), 1933-1956.
doi: 10.1090/S0002-9947-2012-05670-4. |
[12] |
E. Lee, S. Sasi and R. Shivaji,
S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl., 381 (2011), 732-741.
doi: 10.1016/j.jmaa.2011.03.048. |
[13] |
R. Ma and Y. Lu,
Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud., 15 (2015), 789-803.
doi: 10.1515/ans-2015-0403. |
[14] |
P. M. McCabe, J. A. Leach and D. J. Needham,
The evolution of travelling waves in fractional order autocatalysis with decay. Ⅰ. Permanent from travelling waves, SIAM J. Appl. Math., 59 (1998), 870-899.
doi: 10.1137/S0036139996312594. |
[15] |
T. Ouyang and J. Shi,
Exact multiplicity of positive solutions for a class of semilinear problems, Journal of Differential Equations, 146 (1998), 121-156.
doi: 10.1006/jdeq.1998.3414. |
[16] |
E. Poole, B. Roberson and B. Stephenson,
Weak Allee effect, grazing, and S-shaped bifurcation curves, Involve, 5 (2012), 133-158.
doi: 10.2140/involve.2012.5.133. |
[17] |
J. Shi and R. Shivaji,
Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52 (2006), 807-829.
doi: 10.1007/s00285-006-0373-7. |
[18] |
C.-C. Tzeng, K.-C. Hung and S.-H. Wang,
Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity, J. Differential Equations, 252 (2012), 6250-6274.
doi: 10.1016/j.jde.2012.02.020. |
[19] |
M.-H. Wang and M. Kot,
Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83-97.
doi: 10.1016/S0025-5564(01)00048-7. |
[20] |
J. Xin,
Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230.
doi: 10.1137/S0036144599364296. |
[21] |
T.-S. Yeh,
S-shaped and broken S-shaped bifurcation curves for a multiparameter diffusive logistic problem with Holling type-Ⅲ functional response, Commun. Pure Appl. Anal., 16 (2017), 645-670.
doi: 10.3934/cpaa.2017032. |
[22] |
T.-S. Yeh,
Bifurcation curves of positive steady-state solutions for a reaction-diffusion problem of lake eutrophication, J. Math. Anal. Appl., 449 (2017), 1708-1724.
doi: 10.1016/j.jmaa.2016.12.063. |
show all references
References:
[1] |
R. Bartnik and L. Simon,
Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87 (1982), 131-152.
doi: 10.1007/BF01211061. |
[2] |
D. Butler, R. Shivaji and A. Tuck, S-shaped bifurcation curves for logistic growth and weak Allee effect growth models with grazing on an interior patch, Proceedings of the Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, 15–25, Electron. J. Differ. Equ. Conf., 20, Texas State Univ., San Marcos, TX, 2013. |
[3] |
I. Coelho, C. Corsato, F. Obersnel and P. Omari,
Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621-638.
doi: 10.1515/ans-2012-0310. |
[4] |
C. Corsato, Mathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator, PhD thesis, University of Trieste, 2015. Available at https://www.openstarts.units.it/bitstream/10077/11127/1/PhD_Thesis _Corsato.pdf. |
[5] |
R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. 2: Mainly electromagnetism and matter. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964. |
[6] |
S.-Y. Huang,
Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differential Equations, 264 (2018), 5977-6011.
doi: 10.1016/j.jde.2018.01.021. |
[7] |
S.-Y. Huang,
Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application, Commun. Pure Appl. Anal., 17 (2018), 1271-1294.
doi: 10.3934/cpaa.2018061. |
[8] |
S.-Y. Huang and S.-H. Wang,
An evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity, Taiwanese J. Math., 20 (2016), 639-661.
doi: 10.11650/tjm.20.2016.6563. |
[9] |
S.-Y. Huang, Some proofs in a paper "Bifurcation diagrams of one-dimensional Minkowski-curvature problem and its applications", available from http://mx.nthu.edu.tw/~symbol126sy-huang/Proofs2018. |
[10] |
K.-C. Hung, S.-Y. Huang and S.-H. Wang,
A global bifurcation theorem for a positone multiparameter problem and its application, Discrete Contin. Dyn. Syst., 37 (2017), 5127-5149.
doi: 10.3934/dcds.2017222. |
[11] |
K.-C. Hung and S.-H. Wang,
Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications, Trans. Amer. Math. Soc., 365 (2013), 1933-1956.
doi: 10.1090/S0002-9947-2012-05670-4. |
[12] |
E. Lee, S. Sasi and R. Shivaji,
S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl., 381 (2011), 732-741.
doi: 10.1016/j.jmaa.2011.03.048. |
[13] |
R. Ma and Y. Lu,
Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud., 15 (2015), 789-803.
doi: 10.1515/ans-2015-0403. |
[14] |
P. M. McCabe, J. A. Leach and D. J. Needham,
The evolution of travelling waves in fractional order autocatalysis with decay. Ⅰ. Permanent from travelling waves, SIAM J. Appl. Math., 59 (1998), 870-899.
doi: 10.1137/S0036139996312594. |
[15] |
T. Ouyang and J. Shi,
Exact multiplicity of positive solutions for a class of semilinear problems, Journal of Differential Equations, 146 (1998), 121-156.
doi: 10.1006/jdeq.1998.3414. |
[16] |
E. Poole, B. Roberson and B. Stephenson,
Weak Allee effect, grazing, and S-shaped bifurcation curves, Involve, 5 (2012), 133-158.
doi: 10.2140/involve.2012.5.133. |
[17] |
J. Shi and R. Shivaji,
Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52 (2006), 807-829.
doi: 10.1007/s00285-006-0373-7. |
[18] |
C.-C. Tzeng, K.-C. Hung and S.-H. Wang,
Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity, J. Differential Equations, 252 (2012), 6250-6274.
doi: 10.1016/j.jde.2012.02.020. |
[19] |
M.-H. Wang and M. Kot,
Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83-97.
doi: 10.1016/S0025-5564(01)00048-7. |
[20] |
J. Xin,
Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230.
doi: 10.1137/S0036144599364296. |
[21] |
T.-S. Yeh,
S-shaped and broken S-shaped bifurcation curves for a multiparameter diffusive logistic problem with Holling type-Ⅲ functional response, Commun. Pure Appl. Anal., 16 (2017), 645-670.
doi: 10.3934/cpaa.2017032. |
[22] |
T.-S. Yeh,
Bifurcation curves of positive steady-state solutions for a reaction-diffusion problem of lake eutrophication, J. Math. Anal. Appl., 449 (2017), 1708-1724.
doi: 10.1016/j.jmaa.2016.12.063. |






[1] |
Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147 |
[2] |
Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061 |
[3] |
Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris. Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1921-1933. doi: 10.3934/dcdss.2020150 |
[4] |
Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 |
[5] |
Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159 |
[6] |
Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212 |
[7] |
Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497 |
[8] |
Meiyue Jiang, Chu Wang. The Orlicz-Minkowski problem for polytopes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1917-1930. doi: 10.3934/dcdss.2021043 |
[9] |
Guowei Dai, Alfonso Romero, Pedro J. Torres. Global bifurcation of solutions of the mean curvature spacelike equation in certain standard static spacetimes. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3047-3071. doi: 10.3934/dcdss.2020118 |
[10] |
Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155 |
[11] |
Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure and Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963 |
[12] |
Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 |
[13] |
Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77 |
[14] |
Kuo-Chih Hung, Shao-Yuan Huang, Shin-Hwa Wang. A global bifurcation theorem for a positone multiparameter problem and its application. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5127-5149. doi: 10.3934/dcds.2017222 |
[15] |
Yves Coudène, Barbara Schapira. Counterexamples in non-positive curvature. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1095-1106. doi: 10.3934/dcds.2011.30.1095 |
[16] |
Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135 |
[17] |
Alejandro Allendes, Alexander Quaas. Multiplicity results for extremal operators through bifurcation. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 51-65. doi: 10.3934/dcds.2011.29.51 |
[18] |
Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091 |
[19] |
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 |
[20] |
Daniela Gurban, Petru Jebelean, Cǎlin Şerban. Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 133-151. doi: 10.3934/dcds.2020006 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]