• Previous Article
    On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities
  • DCDS Home
  • This Issue
  • Next Article
    Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications
June  2019, 39(6): 3463-3477. doi: 10.3934/dcds.2019143

Isometric embedding with nonnegative Gauss curvature under the graph setting

Department of Mathematics, Rutgers University, New Brunswick, NJ 08901, USA

Received  September 2018 Revised  November 2018 Published  February 2019

We study the regularity of the isometric embedding $ X: $ $ (B(O, r), g) $ $ \rightarrow $ $ (\mathbb{R}^3, g_{can}) $ of a 2-ball with nonnegatively curved $ C^4 $ metric into $ \mathbb{R}^3 $. Under the assumption that $ X $ can be expressed in the graph form, we show $ X \in C^{2,1} $ near $ P $, which is optimal by Iaia's example.

Citation: Xumin Jiang. Isometric embedding with nonnegative Gauss curvature under the graph setting. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3463-3477. doi: 10.3934/dcds.2019143
References:
[1]

P. Daskalopoulos and O. Savin, On Monge-Ampère Equations with Homogeneous Right-Hand Sides, Comm. Pure Appl. Math, 62 (2009), 639-676.  doi: 10.1002/cpa.20263.

[2]

P. Guan, Regularity of a class of quasilinear degenerate elliptic equations, Advances in Mathematics, 132 (1997), 24-45.  doi: 10.1006/aima.1997.1677.

[3]

P. Guan and Y. Y. Li, The Weyl problem with nonnegative Gauss curvature, J. Diff. Geom., 39 (1994), 331-342.  doi: 10.4310/jdg/1214454874.

[4]

P. Guan and E. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane, Trans. Amer. Math. Soc., 361 (2009), 4581-4591.  doi: 10.1090/S0002-9947-09-04640-6.

[5]

J. Hong and C. Zuily, Isometric embedding of the 2-sphere with non negative curvature in $\mathbb{R}^3$, Math. Z., 219 (1995), 323-334.  doi: 10.1007/BF02572368.

[6]

J. Iaia, The Weyl problem for surfaces of nonnegative curvature, Geometric Analysis and Nonlinear Partial Differential Equations (Denton, TX, 1990), 213–220, Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993.

[7]

J. Iaia, Isometric embeddings of surfaces with nonnegative curvature in $\mathbb{R}^3$, Duke Math. J., 67 (1992), 423-459.  doi: 10.1215/S0012-7094-92-06717-2.

[8]

H. Lewy, On the existence of a closed convex surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci., 24 (1938), 104-106. 

[9]

Y. Y. Li and G. Weinstein, A priori bounds for co-dimension one isometric embeddings, Amer. J. of Math., 121 (1999), 945-965.  doi: 10.1353/ajm.1999.0035.

[10]

C. S. Lin, The local isometric embedding in $\mathbb{R}^3$ of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Diff. Geom., 21 (1985), 213-230.  doi: 10.4310/jdg/1214439563.

[11]

L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337-394.  doi: 10.1002/cpa.3160060303.

[12]

A. V. Pogorelov, An example of a two-dimensional Riemannian metric admitting no local realization in $E_3$, Dokl. Akad. Nauk SSSR, 198 (1971), 42-43. 

[13]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lect. Note. in Math., 1445, Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098277.

[14]

H. Weyl, über die Bestimmung einer geschlossen konvexen Fläche durch ihr Linienelement, Vierteljahrsschrift Naturforsch. Gesellschaft, 61 (1916), 40-72. 

show all references

References:
[1]

P. Daskalopoulos and O. Savin, On Monge-Ampère Equations with Homogeneous Right-Hand Sides, Comm. Pure Appl. Math, 62 (2009), 639-676.  doi: 10.1002/cpa.20263.

[2]

P. Guan, Regularity of a class of quasilinear degenerate elliptic equations, Advances in Mathematics, 132 (1997), 24-45.  doi: 10.1006/aima.1997.1677.

[3]

P. Guan and Y. Y. Li, The Weyl problem with nonnegative Gauss curvature, J. Diff. Geom., 39 (1994), 331-342.  doi: 10.4310/jdg/1214454874.

[4]

P. Guan and E. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane, Trans. Amer. Math. Soc., 361 (2009), 4581-4591.  doi: 10.1090/S0002-9947-09-04640-6.

[5]

J. Hong and C. Zuily, Isometric embedding of the 2-sphere with non negative curvature in $\mathbb{R}^3$, Math. Z., 219 (1995), 323-334.  doi: 10.1007/BF02572368.

[6]

J. Iaia, The Weyl problem for surfaces of nonnegative curvature, Geometric Analysis and Nonlinear Partial Differential Equations (Denton, TX, 1990), 213–220, Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993.

[7]

J. Iaia, Isometric embeddings of surfaces with nonnegative curvature in $\mathbb{R}^3$, Duke Math. J., 67 (1992), 423-459.  doi: 10.1215/S0012-7094-92-06717-2.

[8]

H. Lewy, On the existence of a closed convex surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci., 24 (1938), 104-106. 

[9]

Y. Y. Li and G. Weinstein, A priori bounds for co-dimension one isometric embeddings, Amer. J. of Math., 121 (1999), 945-965.  doi: 10.1353/ajm.1999.0035.

[10]

C. S. Lin, The local isometric embedding in $\mathbb{R}^3$ of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Diff. Geom., 21 (1985), 213-230.  doi: 10.4310/jdg/1214439563.

[11]

L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337-394.  doi: 10.1002/cpa.3160060303.

[12]

A. V. Pogorelov, An example of a two-dimensional Riemannian metric admitting no local realization in $E_3$, Dokl. Akad. Nauk SSSR, 198 (1971), 42-43. 

[13]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lect. Note. in Math., 1445, Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098277.

[14]

H. Weyl, über die Bestimmung einer geschlossen konvexen Fläche durch ihr Linienelement, Vierteljahrsschrift Naturforsch. Gesellschaft, 61 (1916), 40-72. 

[1]

Jérôme Bertrand. Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1269-1284. doi: 10.3934/dcds.2014.34.1269

[2]

Alberto Farina, Jesús Ocáriz. Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1929-1937. doi: 10.3934/dcds.2020347

[3]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

[4]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[5]

Hichem Chtioui, Hichem Hajaiej, Marwa Soula. The scalar curvature problem on four-dimensional manifolds. Communications on Pure and Applied Analysis, 2020, 19 (2) : 723-746. doi: 10.3934/cpaa.2020034

[6]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[7]

Zixiao Liu, Jiguang Bao. Asymptotic expansion of 2-dimensional gradient graph with vanishing mean curvature at infinity. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022081

[8]

Qiang Tu. A class of prescribed shifted Gauss curvature equations for horo-convex hypersurfaces in $ \mathbb{H}^{n+1} $. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5397-5407. doi: 10.3934/dcds.2021081

[9]

Randa Ben Mahmoud, Hichem Chtioui. Prescribing the scalar curvature problem on higher-dimensional manifolds. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1857-1879. doi: 10.3934/dcds.2012.32.1857

[10]

Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43

[11]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure and Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[12]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[13]

Shao-Yuan Huang. Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3443-3462. doi: 10.3934/dcds.2019142

[14]

Chungen Liu, Yafang Wang. Existence results for the fractional Q-curvature problem on three dimensional CR sphere. Communications on Pure and Applied Analysis, 2018, 17 (3) : 849-885. doi: 10.3934/cpaa.2018043

[15]

Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271

[16]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[17]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[18]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[19]

Weimin Sheng, Caihong Yi. A class of anisotropic expanding curvature flows. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2017-2035. doi: 10.3934/dcds.2020104

[20]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (181)
  • HTML views (122)
  • Cited by (1)

Other articles
by authors

[Back to Top]