This paper is devoted to the study of the modified quasi-geostrophic equation
$ \partial_t\theta+u\cdot\nabla\theta+\nu\Lambda^\alpha\theta = 0 \ \ \mbox{ with } \ \ u = \Lambda^\beta\mathcal{R}^\perp\theta $
in $ \mathbb{R}^2 $. By the Littlewood-Paley theory, we obtain the local well-posedness and the smoothing effect of the equation in critical Besov spaces. These results are applied to show the global existence of regular solutions for the critical case $ \beta = \alpha-1 $ and the existence of regular solutions for large time $ t>T $ with respect to the supercritical case $ \beta >\alpha -1 $ in Besov spaces. Earlier results for the equation in Hilbert spaces $ H^s $ spaces are improved.
Citation: |
[1] |
H. Bae, Global well-posedness of dissipative quasi-geostrophic equations in critical spaces, Proc. Am. Math. Soc., 136 (2008), 257-261.
doi: 10.1090/S0002-9939-07-09060-0.![]() ![]() ![]() |
[2] |
H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften 343, Springer-Verlag, Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7.![]() ![]() ![]() |
[3] |
L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
[4] |
D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Comm. Math. Phys., 233 (2003), 297-311.
doi: 10.1007/s00220-002-0750-z.![]() ![]() ![]() |
[5] |
Z. M. Chen and Z. Xin, Homogeneity Criterion for the Navier-Stokes equations in the whole spaces, J. Math. Fluid Mech., 3 (2001), 152-182.
doi: 10.1007/PL00000967.![]() ![]() ![]() |
[6] |
Q. Chen, C. Miao and Z. Zhang, A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271 (2007), 821-838.
doi: 10.1007/s00220-007-0193-7.![]() ![]() ![]() |
[7] |
P. Constantin, G. Iyer and J. Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 57 (2008), 2681-2692.
doi: 10.1512/iumj.2008.57.3629.![]() ![]() ![]() |
[8] |
P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.
![]() ![]() |
[9] |
P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.
doi: 10.1007/s00039-012-0172-9.![]() ![]() ![]() |
[10] |
P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948.
doi: 10.1137/S0036141098337333.![]() ![]() ![]() |
[11] |
P. Constantin and J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1103-1110.
doi: 10.1016/j.anihpc.2007.10.001.![]() ![]() ![]() |
[12] |
P. Constantin and J. Wu, Hölder Continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 159-180.
doi: 10.1016/j.anihpc.2007.10.002.![]() ![]() ![]() |
[13] |
A. Córdoba and D. Córdoba, A maximum principle applied to the quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.
doi: 10.1007/s00220-004-1055-1.![]() ![]() ![]() |
[14] |
M. Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation, Geom. Funct. Anal., 21 (2011), 1-13.
doi: 10.1007/s00039-011-0108-9.![]() ![]() ![]() |
[15] |
R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differ. Equ., 26 (2001), 1183-1233.
doi: 10.1081/PDE-100106132.![]() ![]() ![]() |
[16] |
H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, Discrete Contin. Dyn. Syst., 26 (2010), 1197-1211.
doi: 10.3934/dcds.2010.26.1197.![]() ![]() ![]() |
[17] |
H. Dong and D. Li, On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces, J. Differential Equations, 248 (2010), 2684-2702.
doi: 10.1016/j.jde.2010.02.015.![]() ![]() ![]() |
[18] |
H. Dong and N. Pavlović, Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces, Comm. Math. Phys., 290 (2009), 801-812.
doi: 10.1007/s00220-009-0756-x.![]() ![]() ![]() |
[19] |
H. Dong and N. Pavlović, A regularity criterion for the dissipative quasi-geostrophic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1607-1619.
doi: 10.1016/j.anihpc.2008.08.001.![]() ![]() ![]() |
[20] |
N. Ju, Dissipative quasi-geostrophic equation: Local well-posedness, global regularity and similarity solutions, Indiana Univ. Math. J., 56 (2007), 187-206.
doi: 10.1512/iumj.2007.56.2851.![]() ![]() ![]() |
[21] |
A. Kiselev, Regularity and blow up for active scalars, Math. Model. Math. Phenom., 5 (2010), 225-255.
doi: 10.1051/mmnp/20105410.![]() ![]() ![]() |
[22] |
A. Kiselev, Nonlocal maximum principles for active scalars, Adv. Math., 227 (2011), 1806-1826.
doi: 10.1016/j.aim.2011.03.019.![]() ![]() ![]() |
[23] |
A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 370 (2009), 58-72.
doi: 10.1007/s10958-010-9842-z.![]() ![]() ![]() |
[24] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3.![]() ![]() ![]() |
[25] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937.![]() ![]() ![]() |
[26] |
J. Leray, Sur le mouvement dun liquide visqueux emplissant lespace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354.![]() ![]() ![]() |
[27] |
R. May, Global well-posedness for a modified dissipative surface quasi-geostrophic equation in the critical Sobolev space $H^1$, J. Differential Equations, 250 (2011), 320-339.
doi: 10.1016/j.jde.2010.09.021.![]() ![]() ![]() |
[28] |
C. Miao and L. Xue, On the regularity of a class of generalized quasi-geostrophic equations, J. Differential Equations, 251 (2011), 2789-2821.
doi: 10.1016/j.jde.2011.04.018.![]() ![]() ![]() |
[29] |
C. Miao and L. Xue, Global well-posedness for a modified critical dissipative quasi-geostrophic equation, J. Differential Equations, 252 (2012), 792-818.
doi: 10.1016/j.jde.2011.08.018.![]() ![]() ![]() |
[30] |
H. Miura, Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space, Comm. Math. Phys., 267 (2006), 141-157.
doi: 10.1007/s00220-006-0023-3.![]() ![]() ![]() |
[31] |
S. Resnick, Dynamical Problems in Nonlinear Advective Partial Differential Equations, Ph.D. thesis, University of Chicago, 1995.
![]() |
[32] |
L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 693-704.
doi: 10.1016/j.anihpc.2009.11.006.![]() ![]() ![]() |
[33] |
J. Wu, Quasi-geostrophic-type equations with initial data in Morrey spaces, Nonlinearity, 10 (1997), 1409-1420.
doi: 10.1088/0951-7715/10/6/002.![]() ![]() ![]() |
[34] |
J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys., 263 (2006), 803-831.
doi: 10.1007/s00220-005-1483-6.![]() ![]() ![]() |
[35] |
K. Yamazaki, A remark on the global well-posedness of a modified critical quasi-geostrophic equation, arXiv: 1006.0253 [math.AP].
![]() |