
-
Previous Article
Minimality and gluing orbit property
- DCDS Home
- This Issue
-
Next Article
Cohomological equation and cocycle rigidity of discrete parabolic actions
Traveling waves for nonlocal models of traffic flow
Mathematics Department, Pennsylvania State University, University Park, PA 16802, USA |
We consider several nonlocal models for traffic flow, including both microscopic ODE models and macroscopic PDE models. The ODE models describe the movement of individual cars, where each driver adjusts the speed according to the road condition over an interval in the front of the car. These models are known as the FtLs (Follow-the-Leaders) models. The corresponding PDE models, describing the evolution for the density of cars, are conservation laws with nonlocal flux functions. For both types of models, we study stationary traveling wave profiles and stationary discrete traveling wave profiles. (See definitions 1.1 and 1.2, respectively.) We derive delay differential equations satisfied by the profiles for the FtLs models, and delay integro-differential equations for the traveling waves of the nonlocal PDE models. The existence and uniqueness (up to horizontal shifts) of the stationary traveling wave profiles are established. Furthermore, we show that the traveling wave profiles are time asymptotic limits for the corresponding Cauchy problems, under mild assumptions on the smooth initial condition.
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin, Non-local systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963–983.
doi: 10.1137/140975255. |
[2] |
A. Aggarwal and P. Goatin, Crowd dynamics through non-local conservation laws, B. Braz. Math. Soc., 47 (2016), 37–50.
doi: 10.1007/s00574-016-0120-7. |
[3] |
D. Amadori, S. Y. Ha and J. Park, On the global well-posedness of BV weak solutions to the Kuramoto–Sakaguchi equation, J. Differential Equations, 262 (2017), 978–1022.
doi: 10.1016/j.jde.2016.10.004. |
[4] |
D. Amadori and W. Shen, Front tracking approximations for slow erosion, Dicrete Contin. Dyn. Syst., 32 (2012), 1481–1502.
doi: 10.3934/dcds.2012.32.1481. |
[5] |
P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar non-local conservation laws, EASIM: M2MAN, 49 (2015), 19–37.
doi: 10.1051/m2an/2014023. |
[6] |
B. Argall, E. Cheleshkin, J. M. Greenberg, C. Hinde and P. Lin,
A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168.
doi: 10.1137/S0036139901391215. |
[7] |
J. Aubin,
Macroscopic traffic models: Shifting from densities to "celerities", Appl. Math. Comput, 217 (2010), 963-971.
doi: 10.1016/j.amc.2010.02.032. |
[8] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On non-local conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855–885.
doi: 10.1088/0951-7715/24/3/008. |
[9] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[10] |
G.-Q. Chen and C. Christoforou,
Solutions for a nonlocal conservation law with fading memory, Proc. Amer. Math. Soc., 135 (2007), 3905-3915.
doi: 10.1090/S0002-9939-07-08942-3. |
[11] |
F. A. Chiarello, P. Goatin and E. Rossi,
Stability estimates for non-local scalar conservation laws, Nonlinear Analysis: Real World Applications, 45 (2019), 668-687.
doi: 10.1016/j.nonrwa.2018.07.027. |
[12] |
R. M. Colombo and M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci., 32 (2012), 177–196.
doi: 10.1016/S0252-9602(12)60011-3. |
[13] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, Non-local crowd dynamics, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 769–772.
doi: 10.1016/j.crma.2011.07.005. |
[14] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34pp.
doi: 10.1142/S0218202511500230. |
[15] |
R. M. Colombo, F. Marcellini and E. Rossi, Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results, Netw. Heterog. Media, 11 (2016), 49–67.
doi: 10.3934/nhm.2016.11.49. |
[16] |
R. M. Colombo and E. Rossi,
On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014), 217-235.
doi: 10.4171/RSMUP/131-13. |
[17] |
G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 523–537.
doi: 10.1007/s00030-012-0164-3. |
[18] |
C. De Filippis and P. Goatin,
The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., 161 (2017), 131-156.
doi: 10.1016/j.na.2017.05.017. |
[19] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[20] |
L. Dong and L. Tong,
Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 6 (2011), 681-694.
doi: 10.3934/nhm.2011.6.681. |
[21] |
R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20 Springer-Verlag, New York-Heidelberg, 1977. |
[22] |
R. D. Driver and M. D. Rosini,
Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal., 10 (1962), 401-426.
doi: 10.1007/BF00281203. |
[23] |
Q. Du, J. R. Kamm, R. B. Lehoucq and M. L. Parks. A new approach for a nonlocal, nonlinear conservation law, SIAM J. Appl. Math., 72 (2012), 464–487.
doi: 10.1137/110833233. |
[24] |
J. Friedrich, O. Kolb and S. Göttlich,
A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Networks and Heterogeneous Media, 13 (2018), 531-547.
doi: 10.3934/nhm.2018024. |
[25] |
P. Goatin and F. Rossi,
A traffic flow model with non-smooth metric interaction: Well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017), 261-287.
|
[26] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[27] |
H. Holden and N. H. Risebro,
Continuum limit of Follow-the-Leader models –a short proof, Discrete Contin. Dyn. Syst., 38 (2018), 715-722.
doi: 10.3934/dcds.2018031. |
[28] |
H. Holden and N. H. Risebro,
Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, Netw. Heterog. Media, 13 (2018), 409-421.
doi: 10.3934/nhm.2018018. |
[29] |
A. Keimer and L. Pflug,
Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations, 263 (2017), 4023-4069.
doi: 10.1016/j.jde.2017.05.015. |
[30] |
A. Keimer, L. Pflug and M. Spinola,
Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., 466 (2018), 18-55.
doi: 10.1016/j.jmaa.2018.05.013. |
[31] |
A. Keimer, L. Pflug and M. Spinola,
Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, SIAM J. Math. Anal., 50 (2018), 6271-6306.
doi: 10.1137/18M119817X. |
[32] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[33] |
R. H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics, Wiley, New York, 1976. |
[34] |
E. Rossi,
A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.
doi: 10.3934/dcdss.2014.7.579. |
[35] |
G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[36] |
W. Shen,
Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition, Netw. Heterog. Media, 13 (2018), 449-478.
doi: 10.3934/nhm.2018020. |
[37] |
W. Shen, Nonlocal PDE Models for Traffic Flow on Rough Roads, Preprint, 2018. |
[38] |
W. Shen and K. Shikh-Khalil,
Traveling waves for a microscopic model of traffic flow, DCDS (Discrete and Continuous Dynamical Systems), 38 (2018), 2571-2589.
doi: 10.3934/dcds.2018108. |
[39] |
W. Shen and T. Y. Zhang,
Erosion profile by a global model for granular flow, Arch. Rational Mech. Anal., 204 (2012), 837-879.
doi: 10.1007/s00205-012-0499-2. |
[40] |
K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., 57 (1999), 573–600.
doi: 10.1090/qam/1704419. |
show all references
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin, Non-local systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963–983.
doi: 10.1137/140975255. |
[2] |
A. Aggarwal and P. Goatin, Crowd dynamics through non-local conservation laws, B. Braz. Math. Soc., 47 (2016), 37–50.
doi: 10.1007/s00574-016-0120-7. |
[3] |
D. Amadori, S. Y. Ha and J. Park, On the global well-posedness of BV weak solutions to the Kuramoto–Sakaguchi equation, J. Differential Equations, 262 (2017), 978–1022.
doi: 10.1016/j.jde.2016.10.004. |
[4] |
D. Amadori and W. Shen, Front tracking approximations for slow erosion, Dicrete Contin. Dyn. Syst., 32 (2012), 1481–1502.
doi: 10.3934/dcds.2012.32.1481. |
[5] |
P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar non-local conservation laws, EASIM: M2MAN, 49 (2015), 19–37.
doi: 10.1051/m2an/2014023. |
[6] |
B. Argall, E. Cheleshkin, J. M. Greenberg, C. Hinde and P. Lin,
A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168.
doi: 10.1137/S0036139901391215. |
[7] |
J. Aubin,
Macroscopic traffic models: Shifting from densities to "celerities", Appl. Math. Comput, 217 (2010), 963-971.
doi: 10.1016/j.amc.2010.02.032. |
[8] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On non-local conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855–885.
doi: 10.1088/0951-7715/24/3/008. |
[9] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[10] |
G.-Q. Chen and C. Christoforou,
Solutions for a nonlocal conservation law with fading memory, Proc. Amer. Math. Soc., 135 (2007), 3905-3915.
doi: 10.1090/S0002-9939-07-08942-3. |
[11] |
F. A. Chiarello, P. Goatin and E. Rossi,
Stability estimates for non-local scalar conservation laws, Nonlinear Analysis: Real World Applications, 45 (2019), 668-687.
doi: 10.1016/j.nonrwa.2018.07.027. |
[12] |
R. M. Colombo and M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci., 32 (2012), 177–196.
doi: 10.1016/S0252-9602(12)60011-3. |
[13] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, Non-local crowd dynamics, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 769–772.
doi: 10.1016/j.crma.2011.07.005. |
[14] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34pp.
doi: 10.1142/S0218202511500230. |
[15] |
R. M. Colombo, F. Marcellini and E. Rossi, Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results, Netw. Heterog. Media, 11 (2016), 49–67.
doi: 10.3934/nhm.2016.11.49. |
[16] |
R. M. Colombo and E. Rossi,
On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014), 217-235.
doi: 10.4171/RSMUP/131-13. |
[17] |
G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 523–537.
doi: 10.1007/s00030-012-0164-3. |
[18] |
C. De Filippis and P. Goatin,
The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., 161 (2017), 131-156.
doi: 10.1016/j.na.2017.05.017. |
[19] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[20] |
L. Dong and L. Tong,
Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 6 (2011), 681-694.
doi: 10.3934/nhm.2011.6.681. |
[21] |
R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20 Springer-Verlag, New York-Heidelberg, 1977. |
[22] |
R. D. Driver and M. D. Rosini,
Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal., 10 (1962), 401-426.
doi: 10.1007/BF00281203. |
[23] |
Q. Du, J. R. Kamm, R. B. Lehoucq and M. L. Parks. A new approach for a nonlocal, nonlinear conservation law, SIAM J. Appl. Math., 72 (2012), 464–487.
doi: 10.1137/110833233. |
[24] |
J. Friedrich, O. Kolb and S. Göttlich,
A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Networks and Heterogeneous Media, 13 (2018), 531-547.
doi: 10.3934/nhm.2018024. |
[25] |
P. Goatin and F. Rossi,
A traffic flow model with non-smooth metric interaction: Well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017), 261-287.
|
[26] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[27] |
H. Holden and N. H. Risebro,
Continuum limit of Follow-the-Leader models –a short proof, Discrete Contin. Dyn. Syst., 38 (2018), 715-722.
doi: 10.3934/dcds.2018031. |
[28] |
H. Holden and N. H. Risebro,
Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, Netw. Heterog. Media, 13 (2018), 409-421.
doi: 10.3934/nhm.2018018. |
[29] |
A. Keimer and L. Pflug,
Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations, 263 (2017), 4023-4069.
doi: 10.1016/j.jde.2017.05.015. |
[30] |
A. Keimer, L. Pflug and M. Spinola,
Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., 466 (2018), 18-55.
doi: 10.1016/j.jmaa.2018.05.013. |
[31] |
A. Keimer, L. Pflug and M. Spinola,
Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, SIAM J. Math. Anal., 50 (2018), 6271-6306.
doi: 10.1137/18M119817X. |
[32] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[33] |
R. H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics, Wiley, New York, 1976. |
[34] |
E. Rossi,
A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.
doi: 10.3934/dcdss.2014.7.579. |
[35] |
G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[36] |
W. Shen,
Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition, Netw. Heterog. Media, 13 (2018), 449-478.
doi: 10.3934/nhm.2018020. |
[37] |
W. Shen, Nonlocal PDE Models for Traffic Flow on Rough Roads, Preprint, 2018. |
[38] |
W. Shen and K. Shikh-Khalil,
Traveling waves for a microscopic model of traffic flow, DCDS (Discrete and Continuous Dynamical Systems), 38 (2018), 2571-2589.
doi: 10.3934/dcds.2018108. |
[39] |
W. Shen and T. Y. Zhang,
Erosion profile by a global model for granular flow, Arch. Rational Mech. Anal., 204 (2012), 837-879.
doi: 10.1007/s00205-012-0499-2. |
[40] |
K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., 57 (1999), 573–600.
doi: 10.1090/qam/1704419. |





[1] |
Matteo Piu, Gabriella Puppo. Stability analysis of microscopic models for traffic flow with lane changing. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022006 |
[2] |
Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108 |
[3] |
Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic and Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033 |
[4] |
Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537 |
[5] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[6] |
Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015 |
[7] |
Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529 |
[8] |
Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047 |
[9] |
Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417 |
[10] |
Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541 |
[11] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107 |
[12] |
John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501 |
[13] |
Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024 |
[14] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[15] |
Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773 |
[16] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[17] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[18] |
Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217 |
[19] |
Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129 |
[20] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]