We show that a dynamical system with gluing orbit property is either minimal or of positive topological entropy. Moreover, for equicontinuous systems, we show that topological transitivity, minimality and orbit gluing property are equivalent. These facts reflect the similarity and dissimilarity of gluing orbit property with specification like properties.
Citation: |
[1] |
M. Bessa, M. J. Torres and P. Varandas, On the periodic orbits, shadowing and strong transitivity of continuous flows, Nonlinear Analysis, 175 (2018), 191-209.
doi: 10.1016/j.na.2018.06.002.![]() ![]() ![]() |
[2] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.
doi: 10.1515/crll.2002.053.![]() ![]() ![]() |
[3] |
T. Bomfim, M. J. Torres and P. Varandas, Topological features of flows with the reparametrized gluing orbit property, Journal of Differential Equations, 262 (2017), 4292-4313.
doi: 10.1016/j.jde.2017.01.008.![]() ![]() ![]() |
[4] |
T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semiflows, preprint, arXiv: 1507.03905.
![]() |
[5] |
R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452.![]() ![]() ![]() |
[6] |
V. Climenhaga and D. J. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Adv. Math., 303 (2016), 745-799.
doi: 10.1016/j.aim.2016.07.029.![]() ![]() ![]() |
[7] |
D. Constantine, J. Lafont and D. Thompson, The weak specification property for geodesic flows on CAT(-1) spaces, preprint, arXiv: 1606.06253.
![]() |
[8] |
M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976.
![]() ![]() |
[9] |
W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. vol. 36, 1955.
![]() ![]() |
[10] |
F. Hahn and Y. Katznelson, On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc., 126 (1967), 335-360.
doi: 10.2307/1994458.![]() ![]() ![]() |
[11] |
M. Herman, Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergodic Theory Dynam. Systems, 1 (1981), 65-76.
doi: 10.1017/s0143385700001164.![]() ![]() ![]() |
[12] |
D. Kwietniak, M. Lacka and P. Oprocha., A panorama of specification-like properties and their consequences, Contemporary Mathematics, 669 (2016), 155-186.
doi: 10.1090/conm/669/13428.![]() ![]() ![]() |
[13] |
M. Misiurewicz and J. Smítal, Smooth chaotic maps with zero topological entropy, Ergodic Theory and Dynamical Systems, 8 (1988), 421-424.
doi: 10.1017/S0143385700004557.![]() ![]() ![]() |
[14] |
W. Sun and X. Tian, Diffeomorphisms with various $C^1$-stable properties, Acta Mathematica Scientia, 32 (2012), 552-558.
doi: 10.1016/S0252-9602(12)60037-X.![]() ![]() ![]() |
[15] |
X. Tian, S. Wang and X. Wang, Intermediate Lyapunov exponents for system with periodic gluing orbit property, Discrete and Continuous Dynamical Systems - A, 39 (2019), 1019-1032.
doi: 10.3934/dcds.2019042.![]() ![]() |
[16] |
S. Xiang and Y. Zheng, Multifractal analysis for maps with the gluing orbit property, Taiwanese Journal of Mathematics, 21 (2017), 1099-1113.
doi: 10.11650/tjm/7946.![]() ![]() ![]() |