The Chern-Simons-Higgs and the Chern-Simons-Dirac systems in Lorenz gauge are locally well-posed in suitable Fourier-Lebesgue spaces $ \hat{H}^{s, r} $. Our aim is to minimize $ s = s(r) $ in the range $ 1<r \le 2 $. If $ r \to 1 $ we show that we almost reach the critical regularity dictated by scaling. In the classical case $ r = 2 $ the results are due to Huh and Oh. Crucial is the fact that the decisive quadratic nonlinearities fulfill a null condition.
Citation: |
[1] |
N. Bourneveas, T. Candy and S. Machihara, A note on the Chern-Simons-Dirac equations in the Coulomb gauge, Discr. Cont. Dyn. Syst., 34 (2014), 2693-2701.
doi: 10.3934/dcds.2014.34.2693.![]() ![]() ![]() |
[2] |
Y. M. Cho, J. W. Kim and D. H. Park, Fermionic vortex solutions in Chern-Simons electrodynamics, Phys. Rev. D, 45 (1992), 3802-3806.
doi: 10.1103/PhysRevD.45.3802.![]() ![]() ![]() |
[3] |
P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemp. Math., 526 (2010), 125-150.
doi: 10.1090/conm/526/10379.![]() ![]() ![]() |
[4] |
P. d'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc., 9 (2007), 877-899.
doi: 10.4171/JEMS/100.![]() ![]() ![]() |
[5] |
D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations, Ann. Sc. ENS. 4. serie, 33 (2000), 211-274.
doi: 10.1016/S0012-9593(00)00109-9.![]() ![]() ![]() |
[6] |
V. Grigoryan and A. Nahmod, Almost critical wee-posedmess for nonlinear wave equation with $Q_{\mu \nu}$ null forms in 2D, Math. Res. Letters, 21 (2014), 313-332.
doi: 10.4310/MRL.2014.v21.n2.a9.![]() ![]() ![]() |
[7] |
V. Grigoryan and A. Tanguay, Improved well-poseness for the quadratic derivative nonlinear wave equation in 2D, Preprint, arXiv: 1308.1719.
![]() |
[8] |
A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., (2004), 3287–3308.
doi: 10.1155/S1073792804140981.![]() ![]() ![]() |
[9] |
A. Grünrock, On the wave equation with quadratic nonlinearities in three space dimensions, Hyperbolic Diff. Equ., 8 (2011), 1-8.
doi: 10.1142/S0219891611002305.![]() ![]() ![]() |
[10] |
A. Grünrock and L. Vega, Local well-posedness for the modified KdV equation in almost critical $\hat{H}^r_s$ -spaces, Trans. Amer. Mat. Soc., 361 (2009), 5681-5694.
doi: 10.1090/S0002-9947-09-04611-X.![]() ![]() ![]() |
[11] |
J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Letters, 64 (1990), 2230-2233.
doi: 10.1103/PhysRevLett.64.2230.![]() ![]() ![]() |
[12] |
H. Huh, Cauchy problem for the Fermion field equation coupled with the Chern-Simons gauge, Lett. Math. Phys., 79 (2007), 75-94.
doi: 10.1007/s11005-006-0118-y.![]() ![]() ![]() |
[13] |
H. Huh and S.-J. Oh, Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Comm. PDE, 41 (2016), 375-397.
doi: 10.1080/03605302.2015.1132730.![]() ![]() ![]() |
[14] |
R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Letters, 64 (1990), 2234-2237.
doi: 10.1103/PhysRevLett.64.2234.![]() ![]() ![]() |
[15] |
S. Li and R. K. Bhaduri, Planar solitons of the gauged Dirac equation, Phys. Rev. D, 43 (1991), 3573-3574.
![]() |
[16] |
H. Pecher, Low regularity solutions for Chern-Simons-Dirac systems in the temporal and Coulomb gauge, Electron. J. Differential Equations, 2016 (2016), 1-16.
![]() ![]() |
[17] |
H. Pecher, Global well-posedness in energy space for the Chern-Simons-Higgs system in temporal gauge, J. Hyperbolic Diff. Equ., 13 (2016), 331-351.
doi: 10.1142/S0219891616500107.![]() ![]() ![]() |
[18] |
S. Selberg, Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Diff. Equ., 16 (2011), 667-690.
![]() ![]() |
[19] |
S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy, Discrete Cont. Dyn. Syst., 33 (2013), 2531-2546.
doi: 10.3934/dcds.2013.33.2531.![]() ![]() ![]() |
[20] |
A. Vargas and L. Vega, Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$-norm, J. Math. Pures Appl., 80 (2001), 1029-1044.
doi: 10.1016/S0021-7824(01)01224-7.![]() ![]() ![]() |