The aim of this paper is to obtain the dispersion relation for small-amplitude periodic travelling water waves propagating over a flat bed with a specified mean depth under the presence of a discontinuous piecewise constant vorticity. An analysis of the dispersion relation for a model with two rotational layers each having a non-zero constant vorticity is presented. Moreover, we present a stability result for the bifurcation inducing laminar flow solutions.
Citation: |
[1] |
A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math., 15 (2004), 755-768.
doi: 10.1017/S0956792504005777.![]() ![]() ![]() |
[2] |
A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.
doi: 10.1017/S0022112003006773.![]() ![]() ![]() |
[3] |
A. Constantin and W. A. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046.![]() ![]() ![]() |
[4] |
A. Constantin, D. Sattinger and W. Strauss, Variational formulations for steady water waves with vorticity, J. Fluid Mech., 548 (2006), 151-163.
doi: 10.1017/S0022112005007469.![]() ![]() ![]() |
[5] |
A. Constantin, M. Ehrnstrom and E. Wahlen, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.
doi: 10.1215/S0012-7094-07-14034-1.![]() ![]() ![]() |
[6] |
A. Constantin and W. A. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60 (2007), 911-950.
doi: 10.1002/cpa.20165.![]() ![]() ![]() |
[7] |
A. Constantin, R. I. Ivanov and E. Prodanov, Nearly-Hamiltonian structure for water waves with constant vorticity, J. Math. Fluid Mech., 10 (2008), 224-237.
doi: 10.1007/s00021-006-0230-x.![]() ![]() ![]() |
[8] |
A. Constantin and E. Kartashova, Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Europhysics Letters, 86 (2009), 29001.
doi: 10.1209/0295-5075/86/29001.![]() ![]() |
[9] |
A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train, Eur. J. Mech. B Fluids, 30 (2011), 12-16.
doi: 10.1016/j.euromechflu.2010.09.008.![]() ![]() ![]() |
[10] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NFS Regional Conference Series in Applied Mathematics, 81, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971873.![]() ![]() ![]() |
[11] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Annals of Mathematics, 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12.![]() ![]() ![]() |
[12] |
A. Constantin and W. A. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175.
doi: 10.1007/s00205-011-0412-4.![]() ![]() ![]() |
[13] |
A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67.
doi: 10.1007/s00205-010-0314-x.![]() ![]() ![]() |
[14] |
A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commun. Pure Appl. Anal., 11 (2012), 1397-1406.
doi: 10.3934/cpaa.2012.11.1397.![]() ![]() ![]() |
[15] |
A. Constantin and R. I. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Physics of Fluids, 27 (2015), 086603.
doi: 10.1063/1.4929457.![]() ![]() |
[16] |
A. Constantin, R. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.
doi: 10.1007/s00205-016-0990-2.![]() ![]() ![]() |
[17] |
A. Constantin, W. Strauss and E. Varvaruca, Global bifurcation of steady gravity water waves with critical layers, Acta Mathematica, 217 (2016), 195-262.
doi: 10.1007/s11511-017-0144-x.![]() ![]() ![]() |
[18] |
M.-L. Dubreil-Jacotin, Sur la dètermination rigoureuse des ondes permanentes périodiques d'ampleur finie, (French) 1934. 75 pp.
![]() ![]() |
[19] |
M. Ehrnström, J. Escher and E. Wahlén, Steady water waves with multiple critical layers, SIAM J. Math. Anal., 43 (2011), 1436-1456.
doi: 10.1137/100792330.![]() ![]() ![]() |
[20] |
J. Escher, A.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations, 251 (2011), 2932-2949.
doi: 10.1016/j.jde.2011.03.023.![]() ![]() ![]() |
[21] |
J. Escher, Regularity of rotational travelling water waves, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1602-1615.
doi: 10.1098/rsta.2011.0458.![]() ![]() ![]() |
[22] |
J. Escher and B.-V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function, Differential Integral Equations, 27 (2014), 217-232.
![]() ![]() |
[23] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of the Second Order, Second edition. Springer-Verlag, Berlin, 2001.
![]() ![]() |
[24] |
D. Henry, Analyticity of the streamlines for periodic travelling capillary-gravity water waves with vorticity, SIAM J. Math. Anal., 42 (2010), 3103-3111.
doi: 10.1137/100801408.![]() ![]() ![]() |
[25] |
D. Henry, Regularity for steady periodic capillary water waves with vorticity, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1616-1628.
doi: 10.1098/rsta.2011.0449.![]() ![]() ![]() |
[26] |
D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated bottom vorticity layer, J. Nonlinear Math. Phys., 19 (2012), 1240007, 14 pp.
doi: 10.1142/S1402925112400074.![]() ![]() ![]() |
[27] |
D. Henry and B.-V. Matioc, On the regularity of steady periodic stratified water waves, Commun. Pure Appl. Anal., 11 (2012), 1453-1464.
doi: 10.3934/cpaa.2012.11.1453.![]() ![]() ![]() |
[28] |
D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated layer of vorticity at the surface, Nonlinear Anal. Real World Appl., 14 (2013), 1034-1043.
doi: 10.1016/j.nonrwa.2012.08.015.![]() ![]() ![]() |
[29] |
D. Henry, Large amplitude steady periodic waves for fixed-depth rotational flows, Comm. Partial Differential Equations, 38 (2013), 1015-1037.
doi: 10.1080/03605302.2012.734889.![]() ![]() ![]() |
[30] |
D. Henry and B.-V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 955–974.
![]() ![]() |
[31] |
D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows, Quart. Appl. Math., 71 (2013), 455-487.
doi: 10.1090/S0033-569X-2013-01293-8.![]() ![]() ![]() |
[32] |
D. Henry and A.-V. Matioc, Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 775-786.
doi: 10.1017/S0308210512001990.![]() ![]() ![]() |
[33] |
D. Henry and A.-V. Matioc, On the symmetry of steady equatorial wind waves, Nonlinear Anal. Real World Appl., 18 (2014), 50-56.
doi: 10.1016/j.nonrwa.2014.01.009.![]() ![]() ![]() |
[34] |
D. Henry and B.-V. Matioc, Aspects of the mathematical analysis of nonlinear stratified water waves, Elliptic and Parabolic Equations, 159–177, Springer Proc. Math. Stat., 119, Springer, Cham, 2015.
doi: 10.1007/978-3-319-12547-3_7.![]() ![]() ![]() |
[35] |
D. Henry and S. Sastre-Gómez, Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity, Differential Integral Equations, 31 (2018), 1-26.
![]() ![]() |
[36] |
D. Henry, C.-I. Martin and S. Sastre-Gómez, Large amplitude steady periodic water waves for fixed-depth flows with discontinuous vorticity, submitted.
![]() |
[37] |
D. Ionescu-Kruse and C. I. Martin, Periodic Equatorial water flows from a Hamiltonian perspective, J. Differential Equations, 262 (2017), 4451-4474.
doi: 10.1016/j.jde.2017.01.001.![]() ![]() ![]() |
[38] |
I. G. Jonsson, Wave-current interactions. In: Le Mehaut, M., Hanes, D.M., eds., The Sea, Ocean Engineering Science, Vol. 9. New York: Wiley, (1990), 65–120.
![]() |
[39] |
P. Karageorgis, Dispersion relation for water waves with non-constant vorticity, Eur. J. Mech. B Fluids, 34 (2012), 7-12.
doi: 10.1016/j.euromechflu.2012.03.008.![]() ![]() ![]() |
[40] |
M. Kluczek and C. I. Martin, Dispersion relations for fixed mean-depth flows with two discontinuities in vorticity, Nonlinear Anal., 181 (2019), 62-86.
doi: 10.1016/j.na.2018.11.007.![]() ![]() ![]() |
[41] |
J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 2008,197–215.
doi: 10.1017/S0022112008002371.![]() ![]() ![]() |
[42] |
J. Ko and W. Strauss, Large-amplitude steady rotational water waves, Eur. J. Mech. B Fluids, 27 (2008), 96-109.
doi: 10.1016/j.euromechflu.2007.04.004.![]() ![]() ![]() |
[43] |
V. Kozlov, N. Kuznetsov and E. Lokharu, Steady water waves with vorticity: An analysis of the dispersion equation, J. Fluid Mech., 751 (2014), R3, 13 pp.
doi: 10.1017/jfm.2014.322.![]() ![]() ![]() |
[44] |
C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discrete Cont. Dyn. Syst. - Ser. A, 34 (2013), 3109-3123.
doi: 10.3934/dcds.2014.34.3109.![]() ![]() ![]() |
[45] |
C. I. Martin, Dispersion relations for rotational gravity water flows having two jumps in the vorticity distribution, J. Math. Anal. Appl., 418 (2014), 595-611.
doi: 10.1016/j.jmaa.2014.04.014.![]() ![]() ![]() |
[46] |
C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114.
doi: 10.1016/j.jde.2014.01.036.![]() ![]() ![]() |
[47] |
C. I. Martin, Dispersion relations for gravity water flows with two rotational layers, Eur. J. Mech. B Fluids, 50 (2015), 9-18.
doi: 10.1016/j.euromechflu.2014.10.005.![]() ![]() ![]() |
[48] |
C. I. Martin and B.-V. Matioc, Gravity water flows with discontinuous vorticity and stagnation points, Commun. Math. Sci., 14 (2016), 415-441.
doi: 10.4310/CMS.2016.v14.n2.a5.![]() ![]() ![]() |
[49] |
C. I. Martin, Resonant interactions of capillary-gravity water waves, J. Math. Fluid Mech., 19 (2017), 807-817.
doi: 10.1007/s00021-016-0306-1.![]() ![]() ![]() |
[50] |
C. I. Martin, On periodic geophysical water flows with discontinuous vorticity in the equatorial f-plane approximation, Phil. Trans. R. Soc. A, 376 (2018), 20170096, 23pp.
doi: 10.1098/rsta.2017.0096.![]() ![]() ![]() |
[51] |
A.-V. Matioc and B.-V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886.
doi: 10.1007/s00220-014-1918-z.![]() ![]() ![]() |
[52] |
A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity, Differential Integral Equations, 26 (2013), 129-140.
![]() ![]() |
[53] |
A. Nachbin and R. Ribeiro-Junior, Capturing the flow beneath water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170098, 17pp.
doi: 10.1098/rsta.2017.0098.![]() ![]() ![]() |
[54] |
K. Okuda, Internal flow structure of short wind waves, J. Oceanogr. Soc. Jpn., 38 (1982), 28-42.
![]() |
[55] |
D. H. Peregrine, Interactions of water waves and currents, Adv. Appl. Mech., 16 (1976), 9-117.
![]() |
[56] |
O. M. Phillips and M. L. Banner, Wave breaking in the presence of wind drift and swell, J. Fluid Mech., 66 (1974), 625-640.
doi: 10.1017/S0022112074000413.![]() ![]() |
[57] |
G. P. Thomas and G. Klopman, Wave-current interactions in the nearshore region, in: J. N. Hunt (Ed.), Gravity Waves in Water of Finite Depth, Computational Mechanics Publications, WIT, Southampton, United Kingdom, (1997), 255–319.
![]() |
[58] |
E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483.
doi: 10.1016/j.jde.2008.10.005.![]() ![]() ![]() |
[59] |
S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.
doi: 10.1137/080721583.![]() ![]() ![]() |
[60] |
S. Walsh, Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete Contin, Dyn. Syst. Ser. A, 34 (2014), 3241-3285.
doi: 10.3934/dcds.2014.34.3241.![]() ![]() ![]() |
Sketch of the graph of the polynomial providing the dispersion relation for two negative vorticities under the condition (44). The root x01 does not satisfy the non-stagnation condition while the root x02 verifies it if and only if (47) is assumed