In this paper, we investigate the dynamics of the following family of rational maps
$ \begin{equation*} f_{\lambda}(z) = \frac{z^{2n} - \lambda^{3n+1}}{z^n(z^{2n} - \lambda^{n - 1})} \end{equation*} $
with one parameter $ \lambda \in \mathbb{C}^* - \{\lambda: \lambda^{2n + 2} = 1\} $, where $ n\geq 2 $. This family of rational maps is viewed as a singular perturbation of the bi-critical map $ P_{-n}(z) = z^{-n} $ if $ \lambda \neq 0 $ is small. It is proved that the Julia set $ J(f_\lambda) $ is either a quasicircle, a Cantor set of circles, a Sierpiński carpet or a degenerate Sierpiński carpet provided the free critical orbits of $ f_\lambda $ are attracted by the super-attracting cycle $ 0\leftrightarrow\infty $. Furthermore, we prove that there exists suitable $ \lambda $ such that $ J(f_\lambda) $ is a Cantor set of circles but the dynamics of $ f_{\lambda} $ on $ J(f_{\lambda}) $ is not topologically conjugate to that of any known rational maps with only one or two free critical orbits (including McMullen maps and the generalized McMullen maps). The connectivity of $ J(f_{\lambda}) $ is also proved if the free critical orbits are not attracted by the cycle $ 0\leftrightarrow\infty $. Finally we give an estimate of the Hausdorff dimension of the Julia set of $ f_\lambda $ in some special cases.
Citation: |
Figure 1. The Julia sets of $ f_\lambda $ for different $ \lambda $'s when $ n = 4 $. Top left: $ \lambda = 0.8 + 0.3 \rm{i} $ and $ J(f_\lambda) $ is a quasicircle; Top right: $ \lambda = 0.4 $ and $ J(f_\lambda) $ is a Cantor set of circles; Bottom left: $ \lambda = 0.7 $ and $ J(f_\lambda) $ is a Sierpiński carpet; Bottom right: $ \lambda = 0.92 + 0.01 \rm{i} $ and $ J(f_\lambda) $ is a degenerate Sierpiński carpet
Figure 2. The non-escaping loci of $ f_\lambda $, where $ n = 3 $ and $ 4 $. Left: $ n = 3 $, the McMullen domain does not exist and the Julia set $ J(f_\lambda) $ cannot be a Cantor set of circles; Right: $ n = 4 $, there is a punctured domain centered at origin which corresponds to the McMullen domain (the big white part in the center)
Figure 3. The above and below pictures illustrate the mapping relations of $ h_\lambda $ (see (1)) and $ f_\lambda $ respectively when $ D_0 $ contains one of the free critical values but contains no free critical points. One can observe clearly that $ f_{\lambda} $ and $ h_{\lambda} $ are not topologically conjugate on their corresponding Julia sets
[1] |
A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math., 132, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-4422-6.![]() ![]() ![]() |
[2] |
M. Bonk, M. Lyubich and S. Merenkov, Quasisymmetries of Sierpiński carpet Julia sets, Adv. Math., 301 (2016), 383-422.
doi: 10.1016/j.aim.2016.06.007.![]() ![]() ![]() |
[3] |
L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer, New York, N.Y., 1993.
doi: 10.1007/978-1-4612-4364-9.![]() ![]() ![]() |
[4] |
R. L. Devaney, N. Fagella, A. Garijo and X. Jarque, Sierpiński curve Julia sets for quadratic rational maps, Ann. Acad. Sci. Fenn. Math., 39 (2014), 3-22.
doi: 10.5186/aasfm.2014.3903.![]() ![]() ![]() |
[5] |
R. L. Devaney, D. Look and D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana. Univ. Math. J., 54 (2005), 1621-1634.
doi: 10.1512/iumj.2005.54.2615.![]() ![]() ![]() |
[6] |
R. L. Devaney, Singular perturbations of complex polynomials, Bull. Amer. Math. Soc., 50 (2013), 391-429.
doi: 10.1090/S0273-0979-2013-01410-1.![]() ![]() ![]() |
[7] |
R. L. Devaney and E. D. Russell, Connectivity of Julia sets for singularly perturbed rational maps, Chaos, CNN, Memristors and Beyond, World Scientific, 2013,239–245.
doi: 10.1142/9789814434805_0018.![]() ![]() |
[8] |
A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École. Norm. Sup., 18 (1985), 287–343.
doi: 10.24033/asens.1491.![]() ![]() ![]() |
[9] |
J. Fu and F. Yang, On the dynamics of a family of singularly perturbed rational maps, J. Math. Anal. Appl., 424 (2015), 104-121.
doi: 10.1016/j.jmaa.2014.10.090.![]() ![]() ![]() |
[10] |
J. Fu and Y. Zhang, Connectivity of the Julia sets of singularly perturbed rational maps, Proc. Indian Acad. Sci. Math. Sci., 129 (2019), 32.
doi: 10.1007/s12044-019-0478-8.![]() ![]() ![]() |
[11] |
Y. Fu and F. Yang, Area and Hausdorff dimension of Sierpiński carpet Julia sets, to appear in Math. Z., (2019). arXiv: 1812.03016.
doi: 10.1007/s00209-019-02319-4.![]() ![]() |
[12] |
A. Garijo and S. Godillon, On McMullen-like mappings, J. Fractal Geom., 2 (2015), 249-279.
doi: 10.4171/JFG/21.![]() ![]() ![]() |
[13] |
A. Garijo, S. M. Marotta and E. D. Russell, Singular perturbations in the quadratic family with multiple poles, J. Difference Equ. Appl., 19 (2013), 124-145.
doi: 10.1080/10236198.2011.630668.![]() ![]() ![]() |
[14] |
P. Haïsinsky and K. Pilgrim, Quasisymmetrically inequivalent hyperbolic Julia sets, Rev. Mat. Iberoam., 28 (2012), 1025-1034.
doi: 10.4171/RMI/701.![]() ![]() ![]() |
[15] |
J. Hu, O. Muzician and Y. Xiao, Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families, Discrete Contin. Dyn. Syst., 38 (2018), 3189-3221.
doi: 10.3934/dcds.2018139.![]() ![]() ![]() |
[16] |
J. Hu and Y. Xiao, No Herman rings for regularly ramified rational maps, Proc. Amer. Math. Soc., 147 (2019), 1587-1596.
doi: 10.1090/proc/14347.![]() ![]() ![]() |
[17] |
C. T. McMullen, Automorphisms of rational maps, In Holomorphic functions and moduli I, Mathematical Sciences Research Institute Publications, Springer-Verlag, New York, NY, 10 (1988), 31–60.
doi: 10.1007/978-1-4613-9602-4_3.![]() ![]() ![]() |
[18] |
J. Milnor, Dynamics in one Complex Variable, Third Edition, Annals of Mathematics Studies,
160, Princeton Univ. Press, Princeton, NJ, 2006.
![]() ![]() |
[19] |
M. Pilgrim and L. Tan, Rational maps with disconnected Julia set, in Géométrie Complexe Et Systèmes Dynamiques, Astérisque, 261 (2000), 349–384.
![]() ![]() |
[20] |
F. Przytycki, On the hyperbolic Hausdorff dimension of the boundary of a basin of attraction for a holomorphic map and of quasirepellers, Bull. Pol. Acad. Sci. Math., 54 (2006), 41-52.
doi: 10.4064/ba54-1-4.![]() ![]() ![]() |
[21] |
W. Qiu, X. Wang and Y. Yin, Dynamics of McMullen maps, Adv. Math., 229 (2012), 2525-2577.
doi: 10.1016/j.aim.2011.12.026.![]() ![]() ![]() |
[22] |
W. Qiu and F. Yang, Hausdorff dimension and quasi-symmetric uniformization of Cantor circle Julia sets, arXiv: 1811.10042, 2018.
![]() |
[23] |
W. Qiu, F. Yang and Y. Yin, Rational maps whose Julia sets are Cantor circles, Ergodic Theory Dynam. Systems, 35 (2015), 499-529.
doi: 10.1017/etds.2013.53.![]() ![]() ![]() |
[24] |
W. Qiu, F. Yang and Y. Yin, Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps, Discrete Contin. Dynam. Sys., 36 (2016), 3375-3416.
doi: 10.3934/dcds.2016.36.3375.![]() ![]() ![]() |
[25] |
W. Qiu, F. Yang and J. Zeng, Quasisymmetric geometry of the carpet Julia sets, Fund. Math., 244 (2019), 73-107.
doi: 10.4064/fm494-12-2017.![]() ![]() ![]() |
[26] |
D. Sullivan, Conformal dynamical systems, Geometric Dynamics (Rio de Janeiro, 1981), 725–752, Lecture Notes in Math., 1007, Springer, Berlin, 1983.
doi: 10.1007/BFb0061443.![]() ![]() ![]() |
[27] |
Y. Wang and F. Yang, Julia sets as buried Julia components, arXiv: 1707.04852, 2017.
![]() |
[28] |
G. T. Whyburn, Topological characterization of the Sierpiński curves, Fund. Math., 45 (1958), 320-324.
doi: 10.4064/fm-45-1-320-324.![]() ![]() ![]() |
[29] |
Y. Xiao and W. Qiu, The rational maps $F_\lambda(z)=z^m+\lambda/z^d$ have no Herman rings, Proc. Indian Acad. Sci. Math. Sci., 120 (2010), 403-407.
doi: 10.1007/s12044-010-0044-x.![]() ![]() ![]() |
[30] |
Y. Xiao, W. Qiu and Y. Yin, On the dynamics of generalized McMullen maps, Ergod. Th. & Dynam. Sys., 34 (2014), 2093-2112.
doi: 10.1017/etds.2013.21.![]() ![]() ![]() |
[31] |
Y. Xiao and F. Yang, Singular perturbations with multiple poles of the simple polynomials, Qual. Theory Dyn. Syst., 16 (2017), 731-747.
doi: 10.1007/s12346-016-0205-0.![]() ![]() ![]() |
[32] |
Y. Xiao and F. Yang, Singular perturbations of unicritical polynomials with two parameters, Ergod. Th. Dynam. Sys., 37 (2017), 1997-2016.
doi: 10.1017/etds.2015.114.![]() ![]() ![]() |
[33] |
F. Yang, Rational maps without Herman rings, Proc. Amer. Math. Sci, 145 (2017), 1649-1659.
doi: 10.1090/proc/13336.![]() ![]() ![]() |
[34] |
F. Yang, A criterion to generate carpet Julia sets, Proc. Amer. Math. Soc., 146 (2018), 2129-2141.
doi: 10.1090/proc/13924.![]() ![]() ![]() |
The Julia sets of
The non-escaping loci of
The above and below pictures illustrate the mapping relations of
The Julia sets of