Advanced Search
Article Contents
Article Contents

Saddle-node of limit cycles in planar piecewise linear systems and applications

  • * Corresponding author: V. Carmona

    * Corresponding author: V. Carmona 

The first author is supported by Ministerio de Economía y Competitividad through the project MTM2015-65608-P and by Junta de Andaucía by project P12-FQM-1658. The second author is supported by University of Seville VPPI-US and partially supported by Ministerio de Economía y Competitividad through the project MTM2015-65608-P and by Junta de Andaucía by project P12-FQM-1658. The third author is supported by Ministerio de Economía y Competitividad through the projects MTM2014-54275-P and MTM2017-83568-P (AEI/ERDF, EU)

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • In this article, we prove the existence of a saddle-node bifurcation of limit cycles in continuous piecewise linear systems with three zones. The bifurcation arises from the perturbation of a non-generic situation, where there exists a linear center in the middle zone. We obtain an approximation of the relation between the parameters of the system, such that the saddle-node bifurcation takes place, as well as of the period and amplitude of the non-hyperbolic limit cycle that bifurcates. We consider two applications, first a piecewise linear version of the FitzHugh-Nagumo neuron model of spike generation and second an electronic circuit, the memristor oscillator.

    Mathematics Subject Classification: Primary: 34C05, 34C23, 34C25; Secondary: 37G15, 37G25.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic representation of the bifurcation diagram in $ m, a_C $ parameter plane in case $ t_L<0,t_R>0, $ and $ t_L t_R(t_L^2-t_R^2)<0 $ for $ m $ and $ a_C $ sufficiently small. Solid line represents the saddle-node curve $ a_C = a_C^*(m) $. In the region $ a_C>a_C^*(m), $ two limit cycles with opposite stability and close to $ \Gamma_0 $ exist and in the region $ a_C<a_C^*(m) $ no limit cycles close to $ \Gamma_0 $ exist

    Figure 2.  Saddle-node bifurcation in the McKean model (11) with $ C = 0.25, \beta = 0.5, w_0 = 0, a = 1, \delta = 0.25, t_c = 0.1 $ and $ t_r = 0.8 $. According to Corollary 1, the bifurcation takes place at $ I^* = 1.263\ldots $ In panel (a), the parameter $ I = 1.2 $ is smaller than the bifurcation value, then no limit cycles exit near the equilibrium point which is a local attractor. In panel (b) the parameter is just on the bifurcation, $ I = I^* $, and a non-hyperbolic limit cycle appears. This limit cycle is stable from the outside and unstable from the inside. In panel (c) the parameter $ I = 1.265 $ is greater than the bifurcation value and then two concentric limit cycles perturb from the non-hyperbolic one. The outer limit cycle is stable whereas the inner one is unstable. The limit cycles perturbing from the saddle-node limit cycle move away one each other as the parameter increases far from the perturbation value $ I^* $. In panel (d), for $ I = 1.3 $, the inner limit cycle becomes a two zonal limit cycle whereas the outer one becomes a four zones limit cycle

    Figure 3.  Fine tuning of the external impulse, $ I $, in order to facilitate annihilation and single-pulse triggering in the McKean model (13) with $ C = 0.25, \beta = 0.5, w_0 = 0, a = 1, \delta = 0.25, t_c = 0.1 $ and $ t_r = 0.8 $, see Appendix B. (a) An oscillatory behavior is ceased by injecting a pulse, see panel (b). The activity is restarted again by injecting a new pulse

    Figure 4.  Representation of a three-zonal periodic orbit of system (7)

  • [1] I. Alcalá, F. Gordillo and J. Aracil, Saddle-node bifurcation of limit cycles in a feedback system with rate limiter, in 2001 European Control Conference (ECC), (2001), 354–359.
    [2] A. AndronovA. Vitt and  S. KhaikinTheory of Oscillators, Pergamon Press, Oxford, 1966. 
    [3] C. A. Buzzi and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 33 (2013), 3915-3936.  doi: 10.3934/dcds.2013.33.3915.
    [4] V. CarmonaE. FreireE. Ponce and F. Torres, On simplifying and classifying piecewise-linear systems, IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 49 (2002), 609-620.  doi: 10.1109/TCSI.2002.1001950.
    [5] V. CarmonaE. FreireE. PonceF. Torres and F. Ros, Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones. Application to {Chua's} circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3153-3164.  doi: 10.1142/S0218127405014027.
    [6] V. CarmonaS. Fernández-GarcíaF. Fernández-SánchezE. García-Medina and A. E. Teruel, Noose bifurcation and crossing tangency in reversible piecewise linear systems, Nonlinearity, 27 (2014), 585-606.  doi: 10.1088/0951-7715/27/3/585.
    [7] V. CarmonaS. Fernández-García and E. Freire, Saddle–node bifurcation of invariant cones in 3D piecewise linear systems, Phys. D: Nonlinear Phenomena, 241 (2012), 623-635.  doi: 10.1016/j.physd.2011.11.020.
    [8] V. CarmonaS. Fernández-GarcíaE. Freire and F. Torres, Melnikov theory for a class of planar hybrid systems, Phys. D: Nonlinear Phenomena, 248 (2013), 44-54.  doi: 10.1016/j.physd.2013.01.002.
    [9] V. Carmona, F. Fernández-Sánchez, E. García-Medina and A. E. Teruel, Existence of Homoclinic Connections in Continuous Piecewise Linear Systems, Chaos (Woodbury, N.Y.), 20 (2010), 013124, 8 pp. doi: 10.1063/1.3339819.
    [10] V. CarmonaF. Fernández-SánchezE. García-Medina and A. E. Teruel, Noose structure and bifurcations of periodic orbits in reversible three-dimensional piecewise linear differential systems, Journal of Nonlinear Science, 25 (2015), 1209-1224.  doi: 10.1007/s00332-015-9251-z.
    [11] C. Chicone, Bifurcations of nonlinear oscillations and frequency entrainment near resonance, SIAM J. Math. Anal., 23 (1992), 1577-1608.  doi: 10.1137/0523087.
    [12] S. N. ChowB. Deng and B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, J. Dyn. Diff. Equat., 2 (1990), 177-244.  doi: 10.1007/BF01057418.
    [13] L. O. Chua, Memristor: the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507-519.  doi: 10.1109/TCT.1971.1083337.
    [14] F. CorintoA. Ascoli and M. Gilli, Nonlinear dynamics of memristor oscillators, IEEE Trans. Ciruits Syst. Ⅰ: Regul. Pap., 58 (2011), 1323-1336.  doi: 10.1109/TCSI.2010.2097731.
    [15] C. A. Del NegroC. F. HsiaoS. H. Chandler and A. Garfinkel, Evidence for a novel bursting mechanism in rodent trigeminal neurons, Biophysical Journal, 75 (1998), 174-182. 
    [16] M. Desroches, E. Freire, S.J. Hogan, E. Ponce and P. Thota, Canards in piecewise-linear systems: Explosions and super-explosions, Proc. R. Soc. A., 469 (2013), 20120603, 18pp. doi: 10.1098/rspa.2012.0603.
    [17] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications, Springer-Verlag London, London, 2008.
    [18] S. Fernández-GarcíaM. DesrochesM. Krupa and F. Clément, A multiple time scale coupling of piecewise linear oscillators. Application to a neuroendocrine system, SIAM J. Appl. Dyn. Syst., 14 (2015), 643-673.  doi: 10.1137/140984464.
    [19] S. Fernández-GarcíaM. DesrochesM. Krupa and A. E. Teruel, Canard solutions in planar piecewise linear systems with three zones, Dynam. Syst., 31 (2016), 173-197.  doi: 10.1080/14689367.2015.1079304.
    [20] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.
    [21] E. FreireE. PonceF. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 2073-2097.  doi: 10.1142/S0218127498001728.
    [22] E. FreireE. Ponce and J. Ros, Limit cycle bifurcation from center in symmetric piecewise- linear systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 895-907.  doi: 10.1142/S0218127499000638.
    [23] E. FreireE. Ponce and J. Ros, A biparametric bifurcation in 3D continuous piecewise linear systems with two zones. Application to Chua's circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 445-457.  doi: 10.1142/S0218127407017367.
    [24] E. FreireE. Ponce and J. Ros, Following a saddle-node of periodic orbits bifurcation curve in Chua's circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 487-495.  doi: 10.1142/S0218127409023147.
    [25] W. GovaertsY. Kuznetsov and A. Dhooge, Numerical continuation of bifurcations of limit cycles in Matlab, SIAM J. Sci. Comput., 27 (2005), 231-252.  doi: 10.1137/030600746.
    [26] M. Guevara, Bifurcations Involving Fixed Points and Limit Cycles in Biological Systems, in Nonlinear Dynamics in Physiology and Medicine (eds. A. Beuter, L. Glass, MC. Mackey, MS. Titcombe) Springer-Verlag, New York, 25 (2003), 41–85. doi: 10.1007/978-0-387-21640-9_3.
    [27] M. Guevara and H. Jongsma, Three ways of abolishing automaticity in sinoatrial node: ionic modeling and nonlinear dynamics, Am. J. Physiol., 262 (1992), H1268–H1286.
    [28] A. GuillamonR. ProhensA. E. Teruel and C. Vich, Estimation of synaptic conductance in the spiking regime for the mckean neuron model, SIAM J. Appl. Dyn. Syst, 16 (2017), 1397-1424.  doi: 10.1137/16M1088326.
    [29] E. M. Izhikevich, Neural Excitability, Spiking and Bursting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1171-1266.  doi: 10.1142/S0218127400000840.
    [30] E. M. Izhikevich, Synchronization of elliptic bursters, SIAM Rev., 43 (2001), 315-344.  doi: 10.1137/S0036144500382064.
    [31] M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), 312-368.  doi: 10.1006/jdeq.2000.3929.
    [32] M. Kunze, Non-smooth dynamical systems, Lecture Notes in Mathematics, 1744, Springer, 2000. doi: 10.1007/BFb0103843.
    [33] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edition, Springer, 2004. doi: 10.1007/978-1-4757-3978-7.
    [34] J. LlibreE. Ponce and C. Valls, Uniqueness and non-uniqueness of limit cycles for piecewise linear differential systems with three zones and no symmetry, J. Nonlinear Sci., 25 (2015), 861-887.  doi: 10.1007/s00332-015-9244-y.
    [35] J. Llibre and A. E. Teruel, Introduction to the Qualitative Theory of Differential Systems: Planar, Symmetric and Continuous Piecewise Linear Systems, Springer Basel, Birkhäuser Advanced Texts, Basel, 2014. doi: 10.1007/978-3-0348-0657-2.
    [36] O. Makarenkov, Bifurcation of Limit Cycles from a Fold-Fold Singularity in Planar Switched Systems, SIAM J. Appl. Dyn. Syst, 16 (2017), 1340-1371.  doi: 10.1137/16M1070943.
    [37] H. P. McKean, Nagumo's equation, Adv. Math, 4 (1970), 209-223.  doi: 10.1016/0001-8708(70)90023-X.
    [38] J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.
    [39] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, 2001.
    [40] E. Ponce, J. Ros and E. Vela, Limit cycle and boundary equilibrium bifurcations in continuous planar piecewise linear systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530008, 18pp. doi: 10.1142/S0218127415300086.
    [41] M. Ringkvist and Y. Zhou, On Existence and Nonexistence of Limit Cycles for FitzHugh-Nagumo Class Models, LNCIS, 321 (2005), 337-351.  doi: 10.1007/10984413_21.
    [42] C. Rocșoreanu, A. Georgescu and N. Giurgiteanu, The FitzHugh-Nagumo Model. Bifurcation and Dynamics, , Springer Science+Business Media Dordrecht, 2000.
    [43] J. Stensby, Saddle node bifurcation at a nonhyperbolic limit cycle in a phase locked loop, J. of Franklin Inst., 330 (1993), 775-786.  doi: 10.1016/0016-0032(93)90076-7.
    [44] A. Tonnelier, The McKean caricature of the FitzHugh-Nagumo model Ⅰ. The space-clamped system, SIAM J. Appl. Math., 63 (2002), 459-484.  doi: 10.1137/S0036139901393500.
    [45] A. T. Winfree, The Geometry of Biological Time, Interdisciplinary Applied Mathematics, 12, Springer-Verlag, New York, 2001.
  • 加载中



Article Metrics

HTML views(785) PDF downloads(539) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint