Advanced Search
Article Contents
Article Contents

Topological characteristic factors along cubes of minimal systems

  • * Corresponding author: Song Shao

    * Corresponding author: Song Shao

This research is supported by NNSF of China (11571335, 11431012) and by “the Fundamental Research Funds for the Central Universities”

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we study the topological characteristic factors along cubes of minimal systems. It is shown that up to proximal extensions the pro-nilfactors are the topological characteristic factors along cubes of minimal systems. In particular, for a distal minimal system, the maximal $ (d-1) $-step pro-nilfactor is the topological cubic characteristic factor of order $ d $.

    Mathematics Subject Classification: Primary: 37B05; Secondary: 54H20.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] E. Akin and E. Glasner, Topological ergodic decomposition and homogeneous flows, Topological Dynamics and Applications (Minneapolis, MN, 1995), 43–52, Contemp. Math., 215, Amer. Math. Soc., Providence, RI, 1998. doi: 10.1090/conm/215/02929.
    [2] O. Antolin Camarena and B. Szegedy, Nilspaces, nilmanifolds and their morphisms, preprint, arXiv: 1009.3825.
    [3] P. Candela, Notes on nilspaces: Algebraic aspects, Discrete Anal., 2017 (2017), Paper No. 15, 59 pp.
    [4] P. Candela, Notes on compact nilspaces, Discrete Anal., 2017 (2017), Paper No. 16, 57 pp.
    [5] P. DongS. DonosoA. MaassS. Shao and X. Ye, Infinite-step nilsystems, independence and complexity, Ergod. Th. and Dynam. Sys., 33 (2013), 118-143.  doi: 10.1017/S0143385711000861.
    [6] R. EllisS. Glasner and L. Shapiro, Proximal-Isometric Flows, Advances in Math, 17 (1975), 213-260.  doi: 10.1016/0001-8708(75)90093-6.
    [7] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math, 31 (1977), 204-256.  doi: 10.1007/BF02813304.
    [8] H. FurstenbergRecurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981. 
    [9] H. Furstenberg and B. Weiss, A mean ergodic theorem for $\frac{1}{N}\sum_\limits{n = 1}^Nf(T^nx)g(T^{n^2}x)$, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996,193–227.
    [10] E. Glasner, Topological ergodic decompositions and applications to products of powers of a minimal transformation, J. Anal. Math., 64 (1994), 241-262.  doi: 10.1007/BF03008411.
    [11] E. Glasner, $RP^{[d]}$ is an equivalence relation: An enveloping semigroup proof, preprint, arXiv: 1402.3135.
    [12] E. GlasnerY. Gutman and X. Ye, Higher order regionally proximal equivalence relations for general minimal group actions, Adv. Math., 333 (2018), 1004-1041.  doi: 10.1016/j.aim.2018.05.023.
    [13] Y. Gutman, F. Manners and P. Varjú, The structure theory of Nilspaces Ⅰ., To appear in J. Analyse Math. doi: 10.1090/tran/7503.
    [14] Y. GutmanF. Manners and P. Varjú, The structure theory of Nilspaces Ⅱ: Representation as nilmanifolds, Trans. Amer. Math. Soc., 371 (2019), 4951-4992.  doi: 10.1090/tran/7503.
    [15] Y. Gutman, F. Manners and P. Varjú, The structure theory of Nilspaces Ⅲ: Inverse limit representations and topological dynamics, Submitted. http://arXiv.org/abs/1605.08950
    [16] B. Host and B. Kra, Nonconventional averages and nilmanifolds, Ann. of Math., 161 (2005), 398-488.  doi: 10.4007/annals.2005.161.397.
    [17] B. Host and B. Kra, Parallelepipeds, nilpotent groups and Gowers norms, Bull. Soc. Math. France, 136 (2008), 405-437.  doi: 10.24033/bsmf.2561.
    [18] B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, Mathematical Surveys and Monographs, Volume 236, American Mathematical Society, 2018.
    [19] B. HostB. Kra and A. Maass, Nilsequences and a structure theory for topological dynamical systems, Advances in Mathematics, 224 (2010), 103-129.  doi: 10.1016/j.aim.2009.11.009.
    [20] B. Host and A. Maass, Nilsystèmes d'ordre deux et parallélépipèdes, Bull. Soc. Math. France, 135 (2007), 367-405.  doi: 10.24033/bsmf.2539.
    [21] W. Huang, S. Shao and X. D. Ye, Regionally proximal relation of order $d$ along arithmetic progressions and nilsystems, preprint, 2017.
    [22] S. Shao and X. Ye, Regionally proximal relation of order $d$ is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231 (2012), 1786-1817.  doi: 10.1016/j.aim.2012.07.012.
    [23] B. Szegedy, On higher order Fourier analysis, preprint, arXiv: 1203.2260.
    [24] J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, 257. Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.
    [25] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc., 20 (2007), 53-97.  doi: 10.1090/S0894-0347-06-00532-7.
  • 加载中

Article Metrics

HTML views(431) PDF downloads(214) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint