The aim of this paper is to classify the positive solutions of the nonlocal critical equation:
$ - \Delta u = \left( {{I_\mu }*{u^{2_\mu ^*}}} \right){u^{2_\mu ^* - 1}},x \in {{\mathbb{R}}^N}$
where
${I_\mu }(x) = \frac{{\Gamma \left( {\frac{\mu }{2}} \right)}}{{\Gamma \left( {\frac{{N - \mu }}{2}} \right){\pi ^{\frac{N}{2}}}{2^{N - \mu }}|x{|^\mu }}}$
with
Citation: |
[1] |
C. O. Alves, Fa shun Gao, M. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988.
doi: 10.1016/j.jde.2017.05.009.![]() ![]() ![]() |
[2] |
T. Aubin, Best constants in the Sobolev imbedding theorem: The Yamabe problem, Ann. of Math. Stud., 102 (1982), 173-184.
![]() ![]() |
[3] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[4] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[5] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445.![]() ![]() ![]() |
[6] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.
doi: 10.3934/dcds.2005.12.347.![]() ![]() ![]() |
[7] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
[8] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, , AIMS Ser. Differ. Equ. Dyn. Syst., vol.4, 2010.
![]() ![]() |
[9] |
W. Chen and C. Li, Regularity of solutions for a system of integral equations, Commun. Pure Appl. Anal., 4 (2005), 1-8.
doi: 10.3934/cpaa.2005.4.1.![]() ![]() ![]() |
[10] |
W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[11] |
W. Chen, C. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.
doi: 10.1016/j.jfa.2017.02.022.![]() ![]() ![]() |
[12] |
F. Gao, E. da Silva, M. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. Roy. Soc. Edinb. A, 2019.
doi: 10.1017/prm.2018.131.![]() ![]() |
[13] |
F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun.Contemp. Math., 20 (2018), 1750037, 22 pp.
doi: 10.1142/S0219199717500377.![]() ![]() ![]() |
[14] |
F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 61 (2018), 1219-1242.
doi: 10.1007/s11425-016-9067-5.![]() ![]() ![]() |
[15] |
F. Gao and M. Yang, On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents, Journal of Mathematical Analysis and Applications, 448 (2017), 1006-1041.
doi: 10.1016/j.jmaa.2016.11.015.![]() ![]() ![]() |
[16] |
B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^{N}$, Mathematical Analysis and Applications, 7 (1981), 369-402.
![]() ![]() |
[17] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406.![]() ![]() ![]() |
[18] |
N. S. Landkof, Foundations of Modern Potential Theory, translated by A. P. Doohovskoy, Grundlehren der mathematischen Wissenschaften, Springer, New York-Heidelberg, 1972.
![]() ![]() |
[19] |
Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
doi: 10.1007/s00209-012-1036-6.![]() ![]() ![]() |
[20] |
Y. Lei, Qualitative analysis for the Hartree-type equations, SIAM J. Math. Anal., 45 (2013), 388-406.
doi: 10.1137/120879282.![]() ![]() ![]() |
[21] |
Y. Lei, Liouville theorems and classification results for a nonlocal schrodinger equation, Discrete Contin. Dyn. Syst. A, 38 (2018), 5351-5377.
doi: 10.3934/dcds.2018236.![]() ![]() ![]() |
[22] |
Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61.
doi: 10.1007/s00526-011-0450-7.![]() ![]() ![]() |
[23] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.
![]() ![]() |
[24] |
C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.
doi: 10.1007/BF01232373.![]() ![]() ![]() |
[25] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
[26] |
E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.
doi: 10.1002/sapm197757293.![]() ![]() ![]() |
[27] |
E. Lieb and M. Loss, Analysis, , Gradute Studies in Mathematics, 1997.
doi: 10.1090/gsm/014.![]() ![]() |
[28] |
P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.
doi: 10.1016/0362-546X(80)90016-4.![]() ![]() ![]() |
[29] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806.
doi: 10.1016/j.na.2009.01.014.![]() ![]() ![]() |
[30] |
G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations, 42 (2011), 563-577.
doi: 10.1007/s00526-011-0398-7.![]() ![]() ![]() |
[31] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
[32] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
[33] |
J. Seok, Limit profiles and uniqueness of ground states to the nonlinear Choquard equations, Adv. Nonlinear Anal., 2018.
doi: 10.1515/anona-2017-0182.![]() ![]() |
[34] |
Z. Shen, F. Gao and M. Yang, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. A., 38 (2018), 3669-3695.
doi: 10.3934/dcds.2018151.![]() ![]() ![]() |
[35] |
Z. Shen, F. Gao and M. Yang, Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent, Z. Angew. Math. Phys., 68 (2017), Art. 61, 25 pp.
doi: 10.1007/s00033-017-0806-8.![]() ![]() ![]() |
[36] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura. Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013.![]() ![]() ![]() |