June  2020, 40(6): 3117-3142. doi: 10.3934/dcds.2019226

A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation

1. 

Dipartimento di Matematica, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy

2. 

Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, Rome, Italy

3. 

CNRS, Laboratoire de Mathématique, Analyse Numérique et EDP, Université de Paris-Sud, F-91405 Orsay Cedex, France

4. 

Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan

5. 

Faculty of Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo, 135-8181, Japan

6. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan

7. 

Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan

* Corresponding author: Hirofumi Izuhara

Received  April 2018 Revised  October 2018 Published  June 2019

We consider a mathematical model describing population dynamics of normal and abnormal cell densities with contact inhibition of cell growth from a theoretical point of view. In the first part of this paper, we discuss the global existence of a solution satisfying the segregation property in one space dimension for general initial data. Here, the term segregation property means that the different types of cells keep spatially segregated when the initial densities are segregated. The second part is devoted to singular limit problems for solutions of the PDE system and traveling wave solutions, respectively. Actually, the contact inhibition model considered in this paper possesses quite similar properties to those of the Fisher-KPP equation. In particular, the limit problems reveal a relation between the contact inhibition model and the Fisher-KPP equation.

Citation: Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226
References:
[1]

M. Abercrombie, Contact inhibition in tissue culture, In Vitro, 6 (1970), 128-142.  doi: 10.1007/BF02616114.  Google Scholar

[2]

L. AmbrosioF. Bouchut and C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Partial Diff. Equ., 29 (2004), 1635-1651.  doi: 10.1081/PDE-200040210.  Google Scholar

[3]

M. BertschR. Dal Passo and M. Mimura, A free boundary problem arising in a simplifies tumour growth model of contact inhibition, Interfaces Free Boundaries, 12 (2010), 235-250.  doi: 10.4171/IFB/233.  Google Scholar

[4]

M. BertschD. HilhorstH. Izuhara and and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Diff. Eq. Appl., 12 (2010), 235-250.  doi: 10.7153/dea-04-09.  Google Scholar

[5]

M. BertschD. HilhorstH. IzuharaM. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, European J. Appl. Math., 26 (2015), 297-323.  doi: 10.1017/S0956792515000042.  Google Scholar

[6]

M. BertschM. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2012), 131-147.  doi: 10.3934/nhm.2013.8.131.  Google Scholar

[7]

M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, (in preparation). Google Scholar

[8]

M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, Standing and traveling waves in a parabolic-hyperbolic system, to appear in Discret. Contin. Dyn. Syst. Ser. A. doi: 10.3934/nhm.2013.8.131.  Google Scholar

[9]

Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Advanced Nonlinear Studies, 2 (2002), 357-371.  doi: 10.1515/ans-2002-0402.  Google Scholar

[10]

F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[11]

H. Brezis, Analyse Fonctionnelle, Masson, 1983.  Google Scholar

[12]

J. A. CarrilloS. FagioliF. Santambrogio and M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.  doi: 10.1137/17M1158379.  Google Scholar

[13]

M. ChaplainL. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006), 197-229.  doi: 10.1093/imammb/dql009.  Google Scholar

[14]

C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 277–382. doi: 10.1016/S1874-5717(07)80007-7.  Google Scholar

[15]

E. Dibenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), 83-118.  doi: 10.1512/iumj.1983.32.32008.  Google Scholar

[16]

J. Goncerzewicz and D. Hilhorst, Large time behavior of a class of solutions of second order conservation laws, Banach Center Publ., 52 (2000), 119-132.   Google Scholar

[17]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1968.  Google Scholar

[18]

L. A. Peletier, The porous media equation, in Application of Nonlinear Analysis in the Physical Sciences, Pitman, Boston, 1981,229–241.  Google Scholar

[19]

J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365-2386.  doi: 10.1098/rspa.2000.0616.  Google Scholar

[20]

J. Sherratt and M. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312.  doi: 10.1007/s002850100088.  Google Scholar

show all references

References:
[1]

M. Abercrombie, Contact inhibition in tissue culture, In Vitro, 6 (1970), 128-142.  doi: 10.1007/BF02616114.  Google Scholar

[2]

L. AmbrosioF. Bouchut and C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Partial Diff. Equ., 29 (2004), 1635-1651.  doi: 10.1081/PDE-200040210.  Google Scholar

[3]

M. BertschR. Dal Passo and M. Mimura, A free boundary problem arising in a simplifies tumour growth model of contact inhibition, Interfaces Free Boundaries, 12 (2010), 235-250.  doi: 10.4171/IFB/233.  Google Scholar

[4]

M. BertschD. HilhorstH. Izuhara and and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Diff. Eq. Appl., 12 (2010), 235-250.  doi: 10.7153/dea-04-09.  Google Scholar

[5]

M. BertschD. HilhorstH. IzuharaM. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, European J. Appl. Math., 26 (2015), 297-323.  doi: 10.1017/S0956792515000042.  Google Scholar

[6]

M. BertschM. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2012), 131-147.  doi: 10.3934/nhm.2013.8.131.  Google Scholar

[7]

M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, (in preparation). Google Scholar

[8]

M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, Standing and traveling waves in a parabolic-hyperbolic system, to appear in Discret. Contin. Dyn. Syst. Ser. A. doi: 10.3934/nhm.2013.8.131.  Google Scholar

[9]

Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Advanced Nonlinear Studies, 2 (2002), 357-371.  doi: 10.1515/ans-2002-0402.  Google Scholar

[10]

F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[11]

H. Brezis, Analyse Fonctionnelle, Masson, 1983.  Google Scholar

[12]

J. A. CarrilloS. FagioliF. Santambrogio and M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.  doi: 10.1137/17M1158379.  Google Scholar

[13]

M. ChaplainL. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006), 197-229.  doi: 10.1093/imammb/dql009.  Google Scholar

[14]

C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 277–382. doi: 10.1016/S1874-5717(07)80007-7.  Google Scholar

[15]

E. Dibenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), 83-118.  doi: 10.1512/iumj.1983.32.32008.  Google Scholar

[16]

J. Goncerzewicz and D. Hilhorst, Large time behavior of a class of solutions of second order conservation laws, Banach Center Publ., 52 (2000), 119-132.   Google Scholar

[17]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1968.  Google Scholar

[18]

L. A. Peletier, The porous media equation, in Application of Nonlinear Analysis in the Physical Sciences, Pitman, Boston, 1981,229–241.  Google Scholar

[19]

J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365-2386.  doi: 10.1098/rspa.2000.0616.  Google Scholar

[20]

J. Sherratt and M. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312.  doi: 10.1007/s002850100088.  Google Scholar

Figure 1.  Snapshots of dynamics in (1) with compactly supported initial data. The parameter values are $ \alpha = 4 $, $ \beta = 3 $, $ \gamma = 1 $ and $ k = 0.5 $. The solid and dashed curves indicate $ u $ and $ v $, respectively
Figure 2.  The relation between the parameter $ k $ and the wave velocity $ c_k^* $, where the horizontal and vertical axes indicate $ k $ and $ c_k^* $, respectively. The other parameter values are $ \alpha = 4 $, $ \beta = 3 $ and $ \gamma = 1 $
Figure 3.  $ (\varphi, \psi) $-phase planes for (40) with $ k = 2 $ and $ \gamma = 1 $ : (0) $ c = 0 $, (i) $ c = 0.8 $, (ii) $ c = 1 $, (iii) $ c = 1.2 $
[1]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[2]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[3]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[4]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[7]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[8]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[9]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[10]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[11]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[12]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[13]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[14]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[15]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[16]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[17]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[18]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[19]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[20]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]