-
Previous Article
Global stabilization of the full attraction-repulsion Keller-Segel system
- DCDS Home
- This Issue
-
Next Article
A stage structured model of delay differential equations for Aedes mosquito population suppression
Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms
1. | School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China |
2. | Department of Mathematics and Computer Science, John Jay College of Criminal Justice, CUNY, New York, NY 10019, USA |
3. | School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China |
$ \Delta u+\sum\limits_{i = 1}^{k}K_i(|x|)u^{p_i}+\mu f(|x|) = 0, \quad x\in\mathbb{R}^n, $ |
References:
[1] |
D. G. Aronson and H. F. Weinberger,
Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[2] |
S. Bae,
Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 200 (2004), 274-311.
doi: 10.1016/j.jde.2003.11.006. |
[3] |
S. Bae,
Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 194 (2003), 460-499.
doi: 10.1016/S0022-0396(03)00172-4. |
[4] |
S. Bae and T.-K. Chang,
On a class of semilinear elliptic equations in $\mathbb{R}^n$, J. Differential Equations, 185 (2002), 225-250.
doi: 10.1006/jdeq.2001.4162. |
[5] |
S. Bae and W.-M. Ni,
Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on $\mathbb{R}^n$, Math. Ann., 320 (2001), 191-210.
doi: 10.1007/PL00004468. |
[6] |
S.-H. Chen and G.-Z. Lu,
Asymptotic behavior of radial solutions for a class of semilinear elliptic equations, J. Differential Equations, 133 (1997), 340-354.
doi: 10.1006/jdeq.1996.3208. |
[7] |
Y. Deng and Y. Li,
Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2 (1997), 361-382.
|
[8] |
Y. Deng, Y. Li and Y. Liu,
On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 54 (2003), 291-318.
doi: 10.1016/S0362-546X(03)00064-6. |
[9] |
Y. Deng, Y. Li and F. Yang,
On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations, 228 (2006), 507-529.
doi: 10.1016/j.jde.2006.02.010. |
[10] |
Y. Deng and F. Yang,
Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation, Nonlinear Anal., 68 (2008), 246-272.
doi: 10.1016/j.na.2006.10.046. |
[11] |
W.-R. Derrick, S. Chen and J. A. Cima,
Oscillatory radial solutions of semilinear elliptic equations, J. Math. Anal. Appl., 208 (1997), 425-445.
doi: 10.1006/jmaa.1997.5325. |
[12] |
W.-Y. Ding and W.-M. Ni,
On the elliptic equation $\Delta u+ku^{\frac{(n+2)}{(n-2)}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506.
doi: 10.1215/S0012-7094-85-05224-X. |
[13] |
A. S. Eddington,
The dynamics of a globular stellar system, Monthly Notices Roy. Astronom. Soc., 75 (1915), 366-376.
|
[14] |
M. Franca,
Some results on the m-Laplace equations with two growth terms, J. Differential Equations, 17 (2005), 391-425.
doi: 10.1007/s10884-005-4572-5. |
[15] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. |
[16] |
H. Fujita,
On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109-124.
|
[17] |
B. Gidas, W.-M. Ni and L. Nirenberg,
Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[18] |
C.-F. Gui,
On positive entire solutions of the elliptic equation $\Delta u+K(x)u^p = 0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237.
doi: 10.1017/S0308210500022708. |
[19] |
C.-F. Gui,
Positive entire solutions of equation $\Delta u+f(x, u) = 0$, J. Differential Equations, 99 (1992), 245-280.
doi: 10.1016/0022-0396(92)90023-G. |
[20] |
C.-F. Gui, W.-M. Ni and X.-F. Wang,
Further study on a nonlinear heat equation, J. Differential Equations, 169 (2001), 588-613.
doi: 10.1006/jdeq.2000.3909. |
[21] |
C.-F. Gui, W.-M. Ni and X.-F. Wang,
On the stability and instability of positive steady state of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.
doi: 10.1002/cpa.3160450906. |
[22] |
N. Kawano,
On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125-158.
doi: 10.32917/hmj/1206133151. |
[23] |
T. Kusano and M. Naito,
Oscillation theory of entire solutions of second order superlinear elliptic equations, Funkcial. Ekvac., 30 (1987), 269-282.
|
[24] |
T.-Y. Lee and W.-M. Ni,
Global existence, large time behavior and life span of solutions of semilinear parabolic Cauchy problems, Trans. Amer. Math. Soc., 333 (1992), 365-371.
doi: 10.1090/S0002-9947-1992-1057781-6. |
[25] |
Y. Li,
Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^p = 0$ in $\mathbb{R}^n$, J. Differential Equations, 95 (1992), 304-330.
doi: 10.1016/0022-0396(92)90034-K. |
[26] |
Y. Li and W.-M. Ni,
On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\mathbb{R}^n$ I. Asymptotic behavior, Arch. Rational Mech. Anal., 118 (1992), 195-222.
doi: 10.1007/BF00387895. |
[27] |
Y. Liu, Y. Li and Y. Deng,
Separation property of solution for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406.
doi: 10.1006/jdeq.1999.3735. |
[28] |
T. Matukuma, Dynamics of globular clusters, Nippon Temmongakkai Yoho, 1 (1930), 68–89 (In Japanese). |
[29] |
M. Naito,
Asymptotic behaviors of solutions of second order differential equations with integral coefficients, Trans. Amer. Math. Soc., 282 (1984), 577-588.
doi: 10.1090/S0002-9947-1984-0732107-9. |
[30] |
M. Naito,
A note on bounded positive entire solution of semiliner elliptic equations, Hiroshima Math. J., 14 (1984), 211-214.
doi: 10.32917/hmj/1206133156. |
[31] |
W.-M. Ni,
On the elliptic equation $\Delta u+K(x)u^{\frac{(n+2)}{(n-2)}}=0$, it's generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.
doi: 10.1512/iumj.1982.31.31040. |
[32] |
W.-M. Ni and S. Yotsutani,
Semilinear elliptic equations of Matukuma type and related topics, Japan J. Appl. Math., 5 (1988), 1-32.
doi: 10.1007/BF03167899. |
[33] |
K. Nishihara,
Asymptotic behaviors of solutions of second order differential equations, J. Math. Anal. Appl., 189 (1995), 424-441.
doi: 10.1006/jmaa.1995.1028. |
[34] |
P. Polacik and E. Yanagida,
A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.
doi: 10.1016/j.jde.2003.10.019. |
[35] |
P. Polacik and E. Yanagida,
On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771.
doi: 10.1007/s00208-003-0469-y. |
[36] |
X.-F. Wang,
On Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.1090/S0002-9947-1993-1153016-5. |
[37] |
F. Weissler,
Existence and nonexistence of global solution for semilinear heat equation, Israel J. Math., 38 (1981), 29-40.
doi: 10.1007/BF02761845. |
[38] |
F. Yang,
Entire positive solutions for an inhomogeneous semilinear biharmonic equation, Nonlinear Anal., 70 (2009), 1365-1376.
doi: 10.1016/j.na.2008.02.016. |
[39] |
F. Yang and Z. Zhang,
On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 80 (2013), 109-121.
doi: 10.1016/j.na.2012.11.003. |
[40] |
F. Yang and D. Zhang,
Separation property of positive radial solutions for a general semilinear elliptic equation, Acta Math. Sci., 31 (2011), 181-193.
doi: 10.1016/S0252-9602(11)60219-1. |
show all references
References:
[1] |
D. G. Aronson and H. F. Weinberger,
Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[2] |
S. Bae,
Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 200 (2004), 274-311.
doi: 10.1016/j.jde.2003.11.006. |
[3] |
S. Bae,
Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbb{R}^n$, J. Differential Equations, 194 (2003), 460-499.
doi: 10.1016/S0022-0396(03)00172-4. |
[4] |
S. Bae and T.-K. Chang,
On a class of semilinear elliptic equations in $\mathbb{R}^n$, J. Differential Equations, 185 (2002), 225-250.
doi: 10.1006/jdeq.2001.4162. |
[5] |
S. Bae and W.-M. Ni,
Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on $\mathbb{R}^n$, Math. Ann., 320 (2001), 191-210.
doi: 10.1007/PL00004468. |
[6] |
S.-H. Chen and G.-Z. Lu,
Asymptotic behavior of radial solutions for a class of semilinear elliptic equations, J. Differential Equations, 133 (1997), 340-354.
doi: 10.1006/jdeq.1996.3208. |
[7] |
Y. Deng and Y. Li,
Existence of multiple positive solutions for a semilinear elliptic equation, Adv. Differential Equations, 2 (1997), 361-382.
|
[8] |
Y. Deng, Y. Li and Y. Liu,
On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 54 (2003), 291-318.
doi: 10.1016/S0362-546X(03)00064-6. |
[9] |
Y. Deng, Y. Li and F. Yang,
On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations, 228 (2006), 507-529.
doi: 10.1016/j.jde.2006.02.010. |
[10] |
Y. Deng and F. Yang,
Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation, Nonlinear Anal., 68 (2008), 246-272.
doi: 10.1016/j.na.2006.10.046. |
[11] |
W.-R. Derrick, S. Chen and J. A. Cima,
Oscillatory radial solutions of semilinear elliptic equations, J. Math. Anal. Appl., 208 (1997), 425-445.
doi: 10.1006/jmaa.1997.5325. |
[12] |
W.-Y. Ding and W.-M. Ni,
On the elliptic equation $\Delta u+ku^{\frac{(n+2)}{(n-2)}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506.
doi: 10.1215/S0012-7094-85-05224-X. |
[13] |
A. S. Eddington,
The dynamics of a globular stellar system, Monthly Notices Roy. Astronom. Soc., 75 (1915), 366-376.
|
[14] |
M. Franca,
Some results on the m-Laplace equations with two growth terms, J. Differential Equations, 17 (2005), 391-425.
doi: 10.1007/s10884-005-4572-5. |
[15] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. |
[16] |
H. Fujita,
On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109-124.
|
[17] |
B. Gidas, W.-M. Ni and L. Nirenberg,
Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[18] |
C.-F. Gui,
On positive entire solutions of the elliptic equation $\Delta u+K(x)u^p = 0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237.
doi: 10.1017/S0308210500022708. |
[19] |
C.-F. Gui,
Positive entire solutions of equation $\Delta u+f(x, u) = 0$, J. Differential Equations, 99 (1992), 245-280.
doi: 10.1016/0022-0396(92)90023-G. |
[20] |
C.-F. Gui, W.-M. Ni and X.-F. Wang,
Further study on a nonlinear heat equation, J. Differential Equations, 169 (2001), 588-613.
doi: 10.1006/jdeq.2000.3909. |
[21] |
C.-F. Gui, W.-M. Ni and X.-F. Wang,
On the stability and instability of positive steady state of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.
doi: 10.1002/cpa.3160450906. |
[22] |
N. Kawano,
On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125-158.
doi: 10.32917/hmj/1206133151. |
[23] |
T. Kusano and M. Naito,
Oscillation theory of entire solutions of second order superlinear elliptic equations, Funkcial. Ekvac., 30 (1987), 269-282.
|
[24] |
T.-Y. Lee and W.-M. Ni,
Global existence, large time behavior and life span of solutions of semilinear parabolic Cauchy problems, Trans. Amer. Math. Soc., 333 (1992), 365-371.
doi: 10.1090/S0002-9947-1992-1057781-6. |
[25] |
Y. Li,
Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^p = 0$ in $\mathbb{R}^n$, J. Differential Equations, 95 (1992), 304-330.
doi: 10.1016/0022-0396(92)90034-K. |
[26] |
Y. Li and W.-M. Ni,
On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\mathbb{R}^n$ I. Asymptotic behavior, Arch. Rational Mech. Anal., 118 (1992), 195-222.
doi: 10.1007/BF00387895. |
[27] |
Y. Liu, Y. Li and Y. Deng,
Separation property of solution for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406.
doi: 10.1006/jdeq.1999.3735. |
[28] |
T. Matukuma, Dynamics of globular clusters, Nippon Temmongakkai Yoho, 1 (1930), 68–89 (In Japanese). |
[29] |
M. Naito,
Asymptotic behaviors of solutions of second order differential equations with integral coefficients, Trans. Amer. Math. Soc., 282 (1984), 577-588.
doi: 10.1090/S0002-9947-1984-0732107-9. |
[30] |
M. Naito,
A note on bounded positive entire solution of semiliner elliptic equations, Hiroshima Math. J., 14 (1984), 211-214.
doi: 10.32917/hmj/1206133156. |
[31] |
W.-M. Ni,
On the elliptic equation $\Delta u+K(x)u^{\frac{(n+2)}{(n-2)}}=0$, it's generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.
doi: 10.1512/iumj.1982.31.31040. |
[32] |
W.-M. Ni and S. Yotsutani,
Semilinear elliptic equations of Matukuma type and related topics, Japan J. Appl. Math., 5 (1988), 1-32.
doi: 10.1007/BF03167899. |
[33] |
K. Nishihara,
Asymptotic behaviors of solutions of second order differential equations, J. Math. Anal. Appl., 189 (1995), 424-441.
doi: 10.1006/jmaa.1995.1028. |
[34] |
P. Polacik and E. Yanagida,
A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.
doi: 10.1016/j.jde.2003.10.019. |
[35] |
P. Polacik and E. Yanagida,
On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771.
doi: 10.1007/s00208-003-0469-y. |
[36] |
X.-F. Wang,
On Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.1090/S0002-9947-1993-1153016-5. |
[37] |
F. Weissler,
Existence and nonexistence of global solution for semilinear heat equation, Israel J. Math., 38 (1981), 29-40.
doi: 10.1007/BF02761845. |
[38] |
F. Yang,
Entire positive solutions for an inhomogeneous semilinear biharmonic equation, Nonlinear Anal., 70 (2009), 1365-1376.
doi: 10.1016/j.na.2008.02.016. |
[39] |
F. Yang and Z. Zhang,
On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal., 80 (2013), 109-121.
doi: 10.1016/j.na.2012.11.003. |
[40] |
F. Yang and D. Zhang,
Separation property of positive radial solutions for a general semilinear elliptic equation, Acta Math. Sci., 31 (2011), 181-193.
doi: 10.1016/S0252-9602(11)60219-1. |
[1] |
Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871 |
[2] |
Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761 |
[3] |
Alfonso Castro, Shu-Zhi Song. Infinitely many radial solutions for a super-cubic Kirchhoff type problem in a ball. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3347-3355. doi: 10.3934/dcdss.2020127 |
[4] |
Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921 |
[5] |
Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084 |
[6] |
Xia Huang, Liping Wang. Classification to the positive radial solutions with weighted biharmonic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4821-4837. doi: 10.3934/dcds.2020203 |
[7] |
Yuhao Yan. Classification of positive radial solutions to a weighted biharmonic equation. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4139-4154. doi: 10.3934/cpaa.2021149 |
[8] |
Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091 |
[9] |
Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122 |
[10] |
Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris. Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1921-1933. doi: 10.3934/dcdss.2020150 |
[11] |
Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212 |
[12] |
Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735 |
[13] |
P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807 |
[14] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[15] |
Isabel Flores, Matteo Franca, Leonelo Iturriaga. Positive radial solutions involving nonlinearities with zeros. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2555-2579. doi: 10.3934/dcds.2019107 |
[16] |
Haiyan Wang. Positive radial solutions for quasilinear equations in the annulus. Conference Publications, 2005, 2005 (Special) : 878-885. doi: 10.3934/proc.2005.2005.878 |
[17] |
Shu-Yu Hsu. Super fast vanishing solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5383-5414. doi: 10.3934/dcds.2020232 |
[18] |
Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 |
[19] |
Guozhen Lu and Juncheng Wei. On positive entire solutions to the Yamabe-type problem on the Heisenberg and stratified groups. Electronic Research Announcements, 1997, 3: 83-89. |
[20] |
To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]