June  2020, 40(6): 3395-3409. doi: 10.3934/dcds.2019229

Large time behavior of ODE type solutions to nonlinear diffusion equations

1. 

Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

2. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

* Corresponding author: Kazuhiro Ishige

Received  September 2018 Revised  February 2019 Published  June 2019

Fund Project: The second author of this paper was supported in part by the Grant-in-Aid for Scientific Research (A)(No. 15H02058) from Japan Society for the Promotion of Science

Consider the Cauchy problem for a nonlinear diffusion equation
$ \begin{equation} \left\{ \begin{array}{ll} \partial_t u = \Delta u^m+u^\alpha & \quad\mbox{in}\quad{\bf R}^N\times(0,\infty),\\ u(x,0) = \lambda+\varphi(x)>0 & \quad\mbox{in}\quad{\bf R}^N, \end{array} \right. \end{equation} $
where
$ m>0 $
,
$ \alpha\in(-\infty,1) $
,
$ \lambda>0 $
and
$ \varphi\in BC({\bf R}^N)\,\cap\, L^r({\bf R}^N) $
with
$ 1\le r<\infty $
and
$ \inf_{x\in{\bf R}^N}\varphi(x)>-\lambda $
. Then the positive solution to problem (P) behaves like a positive solution to ODE
$ \zeta' = \zeta^\alpha $
in
$ (0,\infty) $
and it tends to
$ +\infty $
as
$ t\to\infty $
. In this paper we obtain the precise description of the large time behavior of the solution and reveal the relationship between the behavior of the solution and the diffusion effect the nonlinear diffusion equation has.
Citation: Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229
References:
[1]

J. Aguirre and M. A. Escobedo, Cauchy problem for $u_t - \Delta u = u^p$ with $0 < p < 1$, Asymptotic behaviour of solutions, Ann. Fac, Sci. Toulouse Math., 8 (1986/87), 175-203.

[2]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694. 

[3]

J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49 (2000), 113-142.  doi: 10.1512/iumj.2000.49.1756.

[4]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an $n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.  doi: 10.2307/1999846.

[5]

S. Kamin and L. A. Peletier, Source-type solutions of degenerate diffusion equations with absorption, Israel J. Math., 50 (1985), 219-230.  doi: 10.1007/BF02761403.

[6]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.  doi: 10.1007/BF02801989.

[7]

K. IshigeM. Ishiwata and and T. Kawakami, The decay of the solutions for the heat equation with a potential, Indiana Univ. Math. J., 58 (2009), 2673-2708.  doi: 10.1512/iumj.2009.58.3771.

[8]

K. Ishige and T. Kawakami, Refined asymptotic profiles for a semilinear heat equation, Math. Ann., 353 (2012), 161-192.  doi: 10.1007/s00208-011-0677-9.

[9]

K. Ishige and T. Kawakami, Asymptotic expansions of solutions of the Cauchy problem for nonlinear parabolic equations, J. Anal. Math., 121 (2013), 317-351.  doi: 10.1007/s11854-013-0038-6.

[10]

K. IshigeT. Kawakami and K. Kobayashi, Asymptotics for a nonlinear integral equation with a generalized heat kernel, J. Evol. Eqn., 14 (2014), 749-777.  doi: 10.1007/s00028-014-0237-3.

[11]

K. Ishige and K. Kobayashi, Convection-diffusion equation with absorption and non-decaying initial data, J. Differential Equations, 254 (2013), 1247-1268.  doi: 10.1016/j.jde.2012.10.014.

[12]

K. IshigeT. Kawakami and H. Michihisa, Asymptotic expansions of solutions of fractional diffusion equations, SIAM J. Math. Anal., 49 (2017), 2167-2190.  doi: 10.1137/16M1101428.

[13]

R. Kajikiya, Stability and instability of stationary solutions for sublinear parabolic equations, J. Differential Equations, 264 (2018), 786-834.  doi: 10.1016/j.jde.2017.09.023.

[14]

T. Kawanago, Existence and behaviour of solutions for $u_t = \Delta(u^m)+u^l$, Adv. Math. Sci. Appl., 7 (1997), 367-400. 

[15]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1968.

[16]

L. A. Peletier and J. Zhao, Large time behaviour of solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 17 (1991), 991-1009.  doi: 10.1016/0362-546X(91)90059-A.

[17]

R. Suzuki, Asymptotic behavior of solutions of quasilinear parabolic equations with supercritical nonlinearity, J. Differential Equations, 190 (2003), 150-181.  doi: 10.1016/S0022-0396(02)00086-4.

[18]

N. Umeda, Large time behavior and uniqueness of solutions of a weakly coupled system of reaction-diffusion equations, Tokyo J. Math., 26 (2003), 347-372.  doi: 10.3836/tjm/1244208595.

[19]

J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space, J. Evol. Eqn., 3 (2003), 67-118.  doi: 10.1007/s000280300004.

[20]

J. L. Vázquez, The Porous Medium Equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.

[21]

L. Wang and J. Yin, Grow-up rate of solutions for the heat equation with a sublinear source, Bound. Value Probl., 96 (2012), 14 pp. doi: 10.1186/1687-2770-2012-96.

show all references

References:
[1]

J. Aguirre and M. A. Escobedo, Cauchy problem for $u_t - \Delta u = u^p$ with $0 < p < 1$, Asymptotic behaviour of solutions, Ann. Fac, Sci. Toulouse Math., 8 (1986/87), 175-203.

[2]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694. 

[3]

J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49 (2000), 113-142.  doi: 10.1512/iumj.2000.49.1756.

[4]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an $n$-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.  doi: 10.2307/1999846.

[5]

S. Kamin and L. A. Peletier, Source-type solutions of degenerate diffusion equations with absorption, Israel J. Math., 50 (1985), 219-230.  doi: 10.1007/BF02761403.

[6]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.  doi: 10.1007/BF02801989.

[7]

K. IshigeM. Ishiwata and and T. Kawakami, The decay of the solutions for the heat equation with a potential, Indiana Univ. Math. J., 58 (2009), 2673-2708.  doi: 10.1512/iumj.2009.58.3771.

[8]

K. Ishige and T. Kawakami, Refined asymptotic profiles for a semilinear heat equation, Math. Ann., 353 (2012), 161-192.  doi: 10.1007/s00208-011-0677-9.

[9]

K. Ishige and T. Kawakami, Asymptotic expansions of solutions of the Cauchy problem for nonlinear parabolic equations, J. Anal. Math., 121 (2013), 317-351.  doi: 10.1007/s11854-013-0038-6.

[10]

K. IshigeT. Kawakami and K. Kobayashi, Asymptotics for a nonlinear integral equation with a generalized heat kernel, J. Evol. Eqn., 14 (2014), 749-777.  doi: 10.1007/s00028-014-0237-3.

[11]

K. Ishige and K. Kobayashi, Convection-diffusion equation with absorption and non-decaying initial data, J. Differential Equations, 254 (2013), 1247-1268.  doi: 10.1016/j.jde.2012.10.014.

[12]

K. IshigeT. Kawakami and H. Michihisa, Asymptotic expansions of solutions of fractional diffusion equations, SIAM J. Math. Anal., 49 (2017), 2167-2190.  doi: 10.1137/16M1101428.

[13]

R. Kajikiya, Stability and instability of stationary solutions for sublinear parabolic equations, J. Differential Equations, 264 (2018), 786-834.  doi: 10.1016/j.jde.2017.09.023.

[14]

T. Kawanago, Existence and behaviour of solutions for $u_t = \Delta(u^m)+u^l$, Adv. Math. Sci. Appl., 7 (1997), 367-400. 

[15]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1968.

[16]

L. A. Peletier and J. Zhao, Large time behaviour of solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal., 17 (1991), 991-1009.  doi: 10.1016/0362-546X(91)90059-A.

[17]

R. Suzuki, Asymptotic behavior of solutions of quasilinear parabolic equations with supercritical nonlinearity, J. Differential Equations, 190 (2003), 150-181.  doi: 10.1016/S0022-0396(02)00086-4.

[18]

N. Umeda, Large time behavior and uniqueness of solutions of a weakly coupled system of reaction-diffusion equations, Tokyo J. Math., 26 (2003), 347-372.  doi: 10.3836/tjm/1244208595.

[19]

J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space, J. Evol. Eqn., 3 (2003), 67-118.  doi: 10.1007/s000280300004.

[20]

J. L. Vázquez, The Porous Medium Equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.

[21]

L. Wang and J. Yin, Grow-up rate of solutions for the heat equation with a sublinear source, Bound. Value Probl., 96 (2012), 14 pp. doi: 10.1186/1687-2770-2012-96.

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[3]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations and Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[4]

Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199

[5]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[6]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[7]

Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804

[8]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[9]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[10]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks and Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[11]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[12]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[13]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[14]

Philippe Laurençot, Christoph Walker. The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions. Kinetic and Related Models, 2021, 14 (6) : 961-980. doi: 10.3934/krm.2021032

[15]

Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176

[16]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[17]

Sandra Lucente. Large data solutions for semilinear higher order equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3525-3533. doi: 10.3934/dcdss.2020247

[18]

Pengchao Lai, Qi Li. Asymptotic behavior for the solutions to a bistable-bistable reaction diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3313-3323. doi: 10.3934/dcdsb.2021186

[19]

Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47

[20]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure and Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (373)
  • HTML views (668)
  • Cited by (0)

Other articles
by authors

[Back to Top]