December  2019, 39(12): 6945-6959. doi: 10.3934/dcds.2019238

On global solutions to semilinear elliptic equations related to the one-phase free boundary problem

1. 

Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland

2. 

Institut für Mathematik, Universität Zürich, Winterthurerstrasse, 8057 Zürich, Switzerland

* Corresponding author

Dedicado con afecto a Luis Caffarelli, cuyos trabajos han influenciado a toda una nueva generación de matemáticos.

Received  September 2018 Revised  February 2019 Published  June 2019

Fund Project: This work has received funding from the European Research Council (ERC) under the Grant Agreements No 721675 and No 801867. In addition, the second author was supported by the Swiss National Science Foundation and by MINECO grant MTM2017-84214-C2-1-P.

Motivated by its relation to models of flame propagation, we study globally Lipschitz solutions of $ \Delta u = f(u) $ in $ \mathbb{R}^n $, where $ f $ is smooth, non-negative, with support in the interval $ [0,1] $. In such setting, any "blow-down" of the solution $ u $ will converge to a global solution to the classical one-phase free boundary problem of Alt–Caffarelli.

In analogy to a famous theorem of Savin for the Allen–Cahn equation, we study here the 1D symmetry of solutions $ u $ that are energy minimizers. Our main result establishes that, in dimensions $ n<6 $, if $ u $ is axially symmetric and stable then it is 1D.

Citation: Xavier Fernández-Real, Xavier Ros-Oton. On global solutions to semilinear elliptic equations related to the one-phase free boundary problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6945-6959. doi: 10.3934/dcds.2019238
References:
[1]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. 

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $ \mathbb{R}^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.  doi: 10.1090/S0894-0347-00-00345-3.

[3] J. D. Buckmaster and G. S. Ludford, Theory of Laminar Flames, Cambridge Univ. Press, Cambridge, 1982. 
[4]

X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension four, Comm. Pure Applied Mathematics, 63 (2010), 1362-1380.  doi: 10.1002/cpa.20327.

[5]

X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $ \mathbb{R}^n$, C. R. Acad. Sci. Paris, Ser. I, 338 (2004), 769-774.  doi: 10.1016/j.crma.2004.03.013.

[6]

X. Cabré and X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, 38 (2013), 135-154.  doi: 10.1080/03605302.2012.697505.

[7]

X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of $ \mathbb{R}^{2m}$, J. Eur. Math. Soc., 11 (2009), 819-843.  doi: 10.4171/JEMS/168.

[8]

L. CaffarelliD. Jerison and C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimension, Contemp. Math., 350 (2004), 83-97.  doi: 10.1090/conm/350/06339.

[9]

L. Caffarelli and S. Salsa, A Geometric Approach To Free Boundary Problems, AMS, 2005. doi: 10.1090/gsm/068.

[10]

L. Caffarelli and J. L. Vázquez, A free-boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc., 347 (1995), 411-441.  doi: 10.1090/S0002-9947-1995-1260199-7.

[11]

E. De Giorgi, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), (Pitagora, Bologna, Italy), 131–188.

[12]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22.  doi: 10.1515/CRELLE.2009.074.

[13]

L. Dupaigne and A. Farina, Stable solutions of $ -\Delta u = f(u) $ in $ \mathbb{R}^N $, J. Eur. Math. Soc., 12 (2010), 855-882.  doi: 10.4171/JEMS/217.

[14]

A. Farina, Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires, Habilitation à diriger des recherches, Paris Ⅵ, 2002.

[15]

A. Farina and E. Valdinoci, The State of the Art for a Conjecture of De Giorgi and Related Problems, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Scientific, 2008. doi: 10.1142/9789812834744_0004.

[16]

D. Jerison and O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal., 25 (2015), 1240-1257.  doi: 10.1007/s00039-015-0335-6.

[17]

Y. LiuK. Wang and J. Wei, Global minimizers of the Allen–Cahn equation in dimension $ n = 8$, J. Math. Pures Appl., 108 (2017), 818-840.  doi: 10.1016/j.matpur.2017.05.006.

[18]

Y. Liu, K. Wang and J. Wei, On one phase free boundary problem in $ \mathbb{R}^n$, preprint, arXiv: 1705.07345, (2017).

[19]

A. Petrosyan and N. K. Yip, Nonuniqueness in a free boundary problem from combustion, J. Geom. Anal., 18 (2007), 1098-1126.  doi: 10.1007/s12220-008-9044-9.

[20]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.  doi: 10.4007/annals.2009.169.41.

[21]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.  doi: 10.1007/s002050050081.

[22]

G. S. Weiss, A singular limit arising in combustion theory: Fine properties of the free boundary, Calc. Var. PDE, 17 (2003), 311-340. 

show all references

Dedicado con afecto a Luis Caffarelli, cuyos trabajos han influenciado a toda una nueva generación de matemáticos.

References:
[1]

H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. 

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $ \mathbb{R}^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.  doi: 10.1090/S0894-0347-00-00345-3.

[3] J. D. Buckmaster and G. S. Ludford, Theory of Laminar Flames, Cambridge Univ. Press, Cambridge, 1982. 
[4]

X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension four, Comm. Pure Applied Mathematics, 63 (2010), 1362-1380.  doi: 10.1002/cpa.20327.

[5]

X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $ \mathbb{R}^n$, C. R. Acad. Sci. Paris, Ser. I, 338 (2004), 769-774.  doi: 10.1016/j.crma.2004.03.013.

[6]

X. Cabré and X. Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, 38 (2013), 135-154.  doi: 10.1080/03605302.2012.697505.

[7]

X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of $ \mathbb{R}^{2m}$, J. Eur. Math. Soc., 11 (2009), 819-843.  doi: 10.4171/JEMS/168.

[8]

L. CaffarelliD. Jerison and C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimension, Contemp. Math., 350 (2004), 83-97.  doi: 10.1090/conm/350/06339.

[9]

L. Caffarelli and S. Salsa, A Geometric Approach To Free Boundary Problems, AMS, 2005. doi: 10.1090/gsm/068.

[10]

L. Caffarelli and J. L. Vázquez, A free-boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc., 347 (1995), 411-441.  doi: 10.1090/S0002-9947-1995-1260199-7.

[11]

E. De Giorgi, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), (Pitagora, Bologna, Italy), 131–188.

[12]

D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635 (2009), 1-22.  doi: 10.1515/CRELLE.2009.074.

[13]

L. Dupaigne and A. Farina, Stable solutions of $ -\Delta u = f(u) $ in $ \mathbb{R}^N $, J. Eur. Math. Soc., 12 (2010), 855-882.  doi: 10.4171/JEMS/217.

[14]

A. Farina, Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires, Habilitation à diriger des recherches, Paris Ⅵ, 2002.

[15]

A. Farina and E. Valdinoci, The State of the Art for a Conjecture of De Giorgi and Related Problems, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Scientific, 2008. doi: 10.1142/9789812834744_0004.

[16]

D. Jerison and O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal., 25 (2015), 1240-1257.  doi: 10.1007/s00039-015-0335-6.

[17]

Y. LiuK. Wang and J. Wei, Global minimizers of the Allen–Cahn equation in dimension $ n = 8$, J. Math. Pures Appl., 108 (2017), 818-840.  doi: 10.1016/j.matpur.2017.05.006.

[18]

Y. Liu, K. Wang and J. Wei, On one phase free boundary problem in $ \mathbb{R}^n$, preprint, arXiv: 1705.07345, (2017).

[19]

A. Petrosyan and N. K. Yip, Nonuniqueness in a free boundary problem from combustion, J. Geom. Anal., 18 (2007), 1098-1126.  doi: 10.1007/s12220-008-9044-9.

[20]

O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.  doi: 10.4007/annals.2009.169.41.

[21]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.  doi: 10.1007/s002050050081.

[22]

G. S. Weiss, A singular limit arising in combustion theory: Fine properties of the free boundary, Calc. Var. PDE, 17 (2003), 311-340. 

Figure 1.  Representation of $ \Phi_\varepsilon(t) = \int_0^t \beta_\varepsilon(s)\, ds $
Figure 2.  Representation of the cases (ⅰ) $ a > 1 $, (ⅱ) $ a = 1 $, and (ⅲ) $ a < 1 $
[1]

Giovanni Gravina, Giovanni Leoni. On the behavior of the free boundary for a one-phase Bernoulli problem with mixed boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4853-4878. doi: 10.3934/cpaa.2020215

[2]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure and Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[3]

Chifaa Ghanmi, Saloua Mani Aouadi, Faouzi Triki. Recovering the initial condition in the one-phase Stefan problem. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1143-1164. doi: 10.3934/dcdss.2021087

[4]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[5]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[6]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051

[7]

Sanchit Chaturvedi, Jonathan Luk. Phase mixing for solutions to 1D transport equation in a confining potential. Kinetic and Related Models, 2022, 15 (3) : 403-416. doi: 10.3934/krm.2022002

[8]

Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058

[9]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic and Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[10]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[11]

Michael L. Frankel, Victor Roytburd. Dynamical structure of one-phase model of solid combustion. Conference Publications, 2005, 2005 (Special) : 287-296. doi: 10.3934/proc.2005.2005.287

[12]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673

[13]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239

[14]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[15]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[16]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[17]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic and Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[18]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[19]

Rachel Clipp, Brooke Steele. An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 61-74. doi: 10.3934/mbe.2012.9.61

[20]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (243)
  • HTML views (315)
  • Cited by (0)

Other articles
by authors

[Back to Top]