October  2019, 39(10): 5743-5774. doi: 10.3934/dcds.2019252

Product of expansive Markov maps with hole

Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India

* Corresponding author

Received  August 2018 Revised  March 2019 Published  July 2019

Fund Project: The research of the first author is supported by the Council of Scientific & Industrial Research (CSIR), India (File no. 09/1020(0133)/2018-EMR-I), and the second author is supported by Center for Research on Environment and Sustainable Technologies (CREST), IISER Bhopal, CoE funded by the Ministry of Human Resource Development (MHRD), India.

We consider product of expansive Markov maps on an interval with hole which is conjugate to a subshift of finite type. For certain class of maps, it is known that the escape rate into a given hole does not just depend on its size but also on its position in the state space. We illustrate this phenomenon for maps considered here. We compare the escape rate into a connected hole and a hole which is a union of holes with a certain property, but have same measure. This gives rise to some interesting combinatorial problems.

Citation: Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252
References:
[1]

R. L. Adler, Symbolic dynamics and Markov Partitions, Bulletin of American Mathematical Society, 35 (1998), 1-56.  doi: 10.1090/S0273-0979-98-00737-X.

[2]

V. S. Afraimovich and L. A. Bunimovich, Which hole is leaking the most: A topological approach to study open systems, Nonlinearity, 23 (2010), 643-656.  doi: 10.1088/0951-7715/23/3/012.

[3]

W. Bahsoun, C. Bose and G. Froyland (Editors), Ergodic Theory, Open Dynamics, and Coherent Structures, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4939-0419-8.

[4]

H. van den Bedem and N. Chernov, Expanding maps of an interval with holes, Ergodic Theory and Dynamical Systems, 22 (2002), 637-654.  doi: 10.1017/S0143385702000329.

[5]

H. BruinM. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes, Ergodic Theory and Dynamical Systems, 30 (2010), 687-728.  doi: 10.1017/S0143385709000200.

[6]

S. BundfussT. Krueger and S. Troubetzkoy, Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory and Dynamical Systems, 31 (2011), 1305-1323.  doi: 10.1017/S0143385710000556.

[7]

L. Bunimovich and A. Yurchenko, Where to place a hole to achieve a maximal escape rate, Israel Journal of Mathematics, 182 (2011), 229-252.  doi: 10.1007/s11856-011-0030-8.

[8]

N. Chernov and R. Markarian, Ergodic properties of Anosov maps with rectangular holes, Boletim Sociedade Brasileira Matematica, 28 (1997), 271-314.  doi: 10.1007/BF01233395.

[9]

M. Demers, Markov extensions and conditionally invariant measures for certain logistic maps with small holes, Ergodic Theory and Dynamical Systems, 25 (2005), 1139-1171.  doi: 10.1017/S0143385704000963.

[10]

M. Demers and L. S. Young, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.  doi: 10.1088/0951-7715/19/2/008.

[11]

M. DemersP. Wright and L. S. Young, Escape rates and physically relevant measures for billiards with small holes, Communications in Mathematical Physics, 294 (2010), 253-288.  doi: 10.1007/s00220-009-0941-y.

[12]

L. J. Guibas and A. M. Odlyzko, String overlaps, pattern matching, and non-transitive games, Journal of Combinatorial Theory, Series A, 30 (1981), 183-208.  doi: 10.1016/0097-3165(81)90005-4.

[13]

G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae, Journal of Statistical Physics, 135 (2009), 519-534.  doi: 10.1007/s10955-009-9747-8.

[14] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.
[15]

G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Transactions of AMS, 252 (1979), 351-366.  doi: 10.2307/1998093.

[16]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, London Mathematical Society Student Texts, 1998. doi: 10.1017/CBO9781139173049.

show all references

References:
[1]

R. L. Adler, Symbolic dynamics and Markov Partitions, Bulletin of American Mathematical Society, 35 (1998), 1-56.  doi: 10.1090/S0273-0979-98-00737-X.

[2]

V. S. Afraimovich and L. A. Bunimovich, Which hole is leaking the most: A topological approach to study open systems, Nonlinearity, 23 (2010), 643-656.  doi: 10.1088/0951-7715/23/3/012.

[3]

W. Bahsoun, C. Bose and G. Froyland (Editors), Ergodic Theory, Open Dynamics, and Coherent Structures, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4939-0419-8.

[4]

H. van den Bedem and N. Chernov, Expanding maps of an interval with holes, Ergodic Theory and Dynamical Systems, 22 (2002), 637-654.  doi: 10.1017/S0143385702000329.

[5]

H. BruinM. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes, Ergodic Theory and Dynamical Systems, 30 (2010), 687-728.  doi: 10.1017/S0143385709000200.

[6]

S. BundfussT. Krueger and S. Troubetzkoy, Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory and Dynamical Systems, 31 (2011), 1305-1323.  doi: 10.1017/S0143385710000556.

[7]

L. Bunimovich and A. Yurchenko, Where to place a hole to achieve a maximal escape rate, Israel Journal of Mathematics, 182 (2011), 229-252.  doi: 10.1007/s11856-011-0030-8.

[8]

N. Chernov and R. Markarian, Ergodic properties of Anosov maps with rectangular holes, Boletim Sociedade Brasileira Matematica, 28 (1997), 271-314.  doi: 10.1007/BF01233395.

[9]

M. Demers, Markov extensions and conditionally invariant measures for certain logistic maps with small holes, Ergodic Theory and Dynamical Systems, 25 (2005), 1139-1171.  doi: 10.1017/S0143385704000963.

[10]

M. Demers and L. S. Young, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.  doi: 10.1088/0951-7715/19/2/008.

[11]

M. DemersP. Wright and L. S. Young, Escape rates and physically relevant measures for billiards with small holes, Communications in Mathematical Physics, 294 (2010), 253-288.  doi: 10.1007/s00220-009-0941-y.

[12]

L. J. Guibas and A. M. Odlyzko, String overlaps, pattern matching, and non-transitive games, Journal of Combinatorial Theory, Series A, 30 (1981), 183-208.  doi: 10.1016/0097-3165(81)90005-4.

[13]

G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae, Journal of Statistical Physics, 135 (2009), 519-534.  doi: 10.1007/s10955-009-9747-8.

[14] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.
[15]

G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Transactions of AMS, 252 (1979), 351-366.  doi: 10.2307/1998093.

[16]

M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, London Mathematical Society Student Texts, 1998. doi: 10.1017/CBO9781139173049.

Figure 1.  Examples of expansive Markov maps
Figure 2.  Basic rectangles when $M = 3$, $N = 2$ and (left) $m = n = 1$; $R_{i,j,1,1}\sim C_{2i+j}$ and (right) $m = n = 2$; (1) $R_{5,2,2,2}\sim C_{34}$, (2) $R_{1,1,2,2}\sim C_{03}$
Figure 3.  $M = 3,N = 2,m = 2,n = 1$, each rectangle is a union of two basic rectangles: (1) $R_{0,0,2,1} = R_{0,0,2,2}\cup R_{0,1,2,2}\sim C_{00}\cup C_{01}$, (2) $R_{6,1,2,1} = R_{6,2,2,2}\cup R_{6,3,2,2}\sim C_{50}\cup C_{51}$
Figure 4.  Escape rates into basic rectangles for $M = 3, N = 2$: (left) $m = n = 2$; $\rho(A)\sim 0.025$, $\rho(B)\sim 0.029$; (right) $m = n = 3$; $\rho(A)\sim 0.0039$, $\rho(B)\sim 0.0046$, $\rho(C)\sim 0.0047$. In each square, rectangles with the same color have the same escape rate
Figure 6.  Escape rates for rectangles when (left) $m = 1,n = 2$; $\rho(A)\sim 0.08$, $\rho(B)\sim 0.1$; (right) $m = 1,n = 3$; $\rho(A)\sim 0.036$, $\rho(B)\sim 0.042$, $\rho(C)\sim 0.047$. In each square, rectangles with the same color have the same escape rate
Figure 5.  Escape rates of rectangles when $M = 3$, $N = 2$, $m = 2$, $n = 1$, $\rho(A)\sim 0.051$, $\rho(B)\sim 0.061$. Rectangles with the same color have the same escape rate
Figure 7.  Rectangles corresponding to the collection $S$ in Construction 1 for $m = 3$ and $q = 6$ for the map $T_{3,2}$ on $\mathbb{T}^2$
Figure 8.  Maps conjugate to shift map on subshift of finite type
Table 1.  $m = 1,n = 2$, each rectangle corresponds to union of three cylinders based at words of length two. Only two possible values of the escape rate, approximate values are shown
$R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
$R_{0,0,1,2}$ $00,02,04$ 1 0.08
$R_{0,1,1,2}$ $01,03,05$ 2 0.1
$R_{0,2,1,2}$ $10,12,14$ 2 0.1
$R_{0,3,1,2}$ $11,13,15$ 1 0.08
$R_{1,0,1,2}$ $20,22,24$ 1 0.08
$R_{1,1,1,2}$ $21,23,25$ 2 0.1
$R_{1,2,1,2}$ $30,32,34$ 2 0.1
$R_{1,3,1,2}$ $31,33,35$ 1 0.08
$R_{2,0,1,2}$ $40,42,44$ 1 0.08
$R_{2,1,1,2}$ $41,43,45$ 2 0.1
$R_{2,2,1,2}$ $50,52,54$ 2 0.1
$R_{2,3,1,2}$ $51,53,55$ 1 0.08
$R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
$R_{0,0,1,2}$ $00,02,04$ 1 0.08
$R_{0,1,1,2}$ $01,03,05$ 2 0.1
$R_{0,2,1,2}$ $10,12,14$ 2 0.1
$R_{0,3,1,2}$ $11,13,15$ 1 0.08
$R_{1,0,1,2}$ $20,22,24$ 1 0.08
$R_{1,1,1,2}$ $21,23,25$ 2 0.1
$R_{1,2,1,2}$ $30,32,34$ 2 0.1
$R_{1,3,1,2}$ $31,33,35$ 1 0.08
$R_{2,0,1,2}$ $40,42,44$ 1 0.08
$R_{2,1,1,2}$ $41,43,45$ 2 0.1
$R_{2,2,1,2}$ $50,52,54$ 2 0.1
$R_{2,3,1,2}$ $51,53,55$ 1 0.08
Table 2.  $m = 1,n = 3$, each rectangle corresponds to union of nine cylinders based at words of length three. Only three possible values of the escape rate, approximate values are shown
$R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
$R_{0,0,1,3}$ $000,002,004,020,022,024,040,042,044$ 1 0.036
$R_{0,1,1,3}$ $001,003,005,021,023,025,041,043,045$ 3 0.047
$R_{0,2,1,3}$ $010,012,014,030,032,034,050,052,054$ 2 0.042
$R_{0,3,1,3}$ $011,013,015,031,033,035,051,053,055$ 3 0.047
$R_{0,4,1,3}$ $100,102,104,120,122,124,140,142,144$ 3 0.047
$R_{0,5,1,3}$ $101,103,105,121,123,125,141,143,145$ 2 0.042
$R_{0,6,1,3}$ $110,112,114,130,132,134,150,152,154$ 3 0.047
$R_{0,7,1,3}$ $111,113,115,131,133,135,151,153,155$ 1 0.036
$R_{1,0,1,3}$ $200,202,204,220,222,224,240,242,244$ 1 0.036
$R_{1,1,1,3}$ $201,203,205,221,223,225,241,243,245$ 3 0.047
$R_{1,2,1,3}$ $210,212,214,230,232,234,250,252,254$ 2 0.042
$R_{1,3,1,3}$ $211,213,215,231,233,235,251,253,255$ 3 0.047
$R_{1,4,1,3}$ $300,302,304,320,322,324,340,342,344$ 3 0.047
$R_{1,5,1,3}$ $301,303,305,321,323,325,341,343,345$ 2 0.042
$R_{1,6,1,3}$ $310,312,314,330,332,334,350,352,354$ 3 0.047
$R_{1,7,1,3}$ $311,313,315,331,333,335,351,353,355$ 1 0.036
$R_{2,0,1,3}$ $400,402,404,420,422,424,440,442,444$ 1 0.036
$R_{2,1,1,3}$ $401,403,405,421,423,425,441,443,445$ 3 0.047
$R_{2,2,1,3}$ $410,412,414,430,432,434,450,452,454$ 2 0.042
$R_{2,3,1,3}$ $411,413,415,431,433,435,451,453,455$ 3 0.047
$R_{2,4,1,3}$ $500,502,504,520,522,524,540,542,544$ 3 0.047
$R_{2,5,1,3}$ $501,503,505,521,523,525,541,543,545$ 2 0.042
$R_{2,6,1,3}$ $510,512,514,530,532,534,550,552,554$ 3 0.047
$R_{2,7,1,3}$ $511,513,515,531,533,535,551,553,555$ 1 0.036
$R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
$R_{0,0,1,3}$ $000,002,004,020,022,024,040,042,044$ 1 0.036
$R_{0,1,1,3}$ $001,003,005,021,023,025,041,043,045$ 3 0.047
$R_{0,2,1,3}$ $010,012,014,030,032,034,050,052,054$ 2 0.042
$R_{0,3,1,3}$ $011,013,015,031,033,035,051,053,055$ 3 0.047
$R_{0,4,1,3}$ $100,102,104,120,122,124,140,142,144$ 3 0.047
$R_{0,5,1,3}$ $101,103,105,121,123,125,141,143,145$ 2 0.042
$R_{0,6,1,3}$ $110,112,114,130,132,134,150,152,154$ 3 0.047
$R_{0,7,1,3}$ $111,113,115,131,133,135,151,153,155$ 1 0.036
$R_{1,0,1,3}$ $200,202,204,220,222,224,240,242,244$ 1 0.036
$R_{1,1,1,3}$ $201,203,205,221,223,225,241,243,245$ 3 0.047
$R_{1,2,1,3}$ $210,212,214,230,232,234,250,252,254$ 2 0.042
$R_{1,3,1,3}$ $211,213,215,231,233,235,251,253,255$ 3 0.047
$R_{1,4,1,3}$ $300,302,304,320,322,324,340,342,344$ 3 0.047
$R_{1,5,1,3}$ $301,303,305,321,323,325,341,343,345$ 2 0.042
$R_{1,6,1,3}$ $310,312,314,330,332,334,350,352,354$ 3 0.047
$R_{1,7,1,3}$ $311,313,315,331,333,335,351,353,355$ 1 0.036
$R_{2,0,1,3}$ $400,402,404,420,422,424,440,442,444$ 1 0.036
$R_{2,1,1,3}$ $401,403,405,421,423,425,441,443,445$ 3 0.047
$R_{2,2,1,3}$ $410,412,414,430,432,434,450,452,454$ 2 0.042
$R_{2,3,1,3}$ $411,413,415,431,433,435,451,453,455$ 3 0.047
$R_{2,4,1,3}$ $500,502,504,520,522,524,540,542,544$ 3 0.047
$R_{2,5,1,3}$ $501,503,505,521,523,525,541,543,545$ 2 0.042
$R_{2,6,1,3}$ $510,512,514,530,532,534,550,552,554$ 3 0.047
$R_{2,7,1,3}$ $511,513,515,531,533,535,551,553,555$ 1 0.036
Table 3.  $m = 4,n = 2$, each rectangle corresponds to union of four cylinders based at words of length four. Only five possible values of the escape rate, approximate values are shown
$R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
$R_{0,0,4,2}$ $0000,0001,0010,0011$ 1 0.0028
$R_{1,0,4,2}$ $0002,0003,0012,0013$ 4 0.00312
$R_{2,0,4,2}$ $0020,0021,0030,0031$ 3 0.00309
$R_{10,0,4,2}$ $0202,0203,0212,0213$ 2 0.00303
$R_{0,1,4,2}$ $0100,0101,0110,0111$ 2 0.00301
$R_{1,1,4,2}$ $0102,0103,0112,0113$ 4 0.00312
$R_{2,1,4,2}$ $0120,0121,0130,0131$ 3 0.00309
$R_{10,1,4,2}$ $0302,0303,0312,0313$ 2 0.00303
$R_{0,2,4,2}$ $1000,1001,1010,1011$ 2 0.00301
$R_{i,j,m,n}$ Corresponding words $\tau_{\text{min}}$ $\rho(R_{i,j,m,n})\sim$
$R_{0,0,4,2}$ $0000,0001,0010,0011$ 1 0.0028
$R_{1,0,4,2}$ $0002,0003,0012,0013$ 4 0.00312
$R_{2,0,4,2}$ $0020,0021,0030,0031$ 3 0.00309
$R_{10,0,4,2}$ $0202,0203,0212,0213$ 2 0.00303
$R_{0,1,4,2}$ $0100,0101,0110,0111$ 2 0.00301
$R_{1,1,4,2}$ $0102,0103,0112,0113$ 4 0.00312
$R_{2,1,4,2}$ $0120,0121,0130,0131$ 3 0.00309
$R_{10,1,4,2}$ $0302,0303,0312,0313$ 2 0.00303
$R_{0,2,4,2}$ $1000,1001,1010,1011$ 2 0.00301
Table 4.  Upper bound on $m$ in Construction 2 with $q = 6$
$n$ $\ell=1$ $\ell=2$ $\ell=3$ $\ell=4$
1 1 2 2 2
2 10 7 5 3
3 20 11 7 5
4 30 15 10 7
5 40 20 12 8
6 50 24 15 10
7 59 29 18 12
8 69 33 20 13
9 79 38 23 15
$n$ $\ell=1$ $\ell=2$ $\ell=3$ $\ell=4$
1 1 2 2 2
2 10 7 5 3
3 20 11 7 5
4 30 15 10 7
5 40 20 12 8
6 50 24 15 10
7 59 29 18 12
8 69 33 20 13
9 79 38 23 15
Table 5.  Escape rates for $f$ into holes corresponding to a cylinder based at an allowed word of length two
Holes $H=R_{ij}$ $\tilde{\mu}(H)$ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
$R_{00}$ 0.2 0.188 1
$R_{01}$, $R_{02}$, $R_{10}$, $R_{20}$ 0.124 0.153 2
$R_{03}$, $R_{12}$, $R_{21}$, $R_{30}$ 0.076 0.081 2
Holes $H=R_{ij}$ $\tilde{\mu}(H)$ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
$R_{00}$ 0.2 0.188 1
$R_{01}$, $R_{02}$, $R_{10}$, $R_{20}$ 0.124 0.153 2
$R_{03}$, $R_{12}$, $R_{21}$, $R_{30}$ 0.076 0.081 2
Table 6.  Escape rates for $f$ into holes corresponding to a cylinder based at an allowed word of length three
Holes $H=R_{ijk}$ $\tilde{\mu}(H)$ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
$R_{010}$, $R_{020}$, $R_{030}$ 0.076 0.081 2
$R_{000}$ 0.076 0.057 1
$R_{001}$, $R_{002}$, $R_{012}$, $R_{021}$, $R_{100}$, $R_{120}$, $R_{200}$, $R_{210}$ 0.047 0.054 3
$R_{003}$, $R_{102}$, $R_{201}$, $R_{300}$ 0.029 0.031 3
$R_{101}$, $R_{121}$, $R_{202}$, $R_{212}$ 0.029 0.028 2
$R_{103}$, $R_{203}$, $R_{301}$, $R_{302}$ 0.018 0.019 3
$R_{303}$ 0.011 0.010 2
Holes $H=R_{ijk}$ $\tilde{\mu}(H)$ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
$R_{010}$, $R_{020}$, $R_{030}$ 0.076 0.081 2
$R_{000}$ 0.076 0.057 1
$R_{001}$, $R_{002}$, $R_{012}$, $R_{021}$, $R_{100}$, $R_{120}$, $R_{200}$, $R_{210}$ 0.047 0.054 3
$R_{003}$, $R_{102}$, $R_{201}$, $R_{300}$ 0.029 0.031 3
$R_{101}$, $R_{121}$, $R_{202}$, $R_{212}$ 0.029 0.028 2
$R_{103}$, $R_{203}$, $R_{301}$, $R_{302}$ 0.018 0.019 3
$R_{303}$ 0.011 0.010 2
Table 7.  Escape rates for $f = T_2\times T_2\times S$ into holes corresponding to a cylinder based at an allowed word of length two
Holes $H$ $\tilde{\mu}(H)\sim $ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
$R_{aa}$, $a$ is even 0.0279 0.0251 1
$R_{ab}$, exactly one of $a$ or $b$ is even 0.0173 0.0176 2
$R_{ab}$, both $a\ne b$ are even 0.0279 0.0293 2
Holes $H$ $\tilde{\mu}(H)\sim $ $\rho(H)\sim$ $\tau_{\text{min}}(H)$
$R_{aa}$, $a$ is even 0.0279 0.0251 1
$R_{ab}$, exactly one of $a$ or $b$ is even 0.0173 0.0176 2
$R_{ab}$, both $a\ne b$ are even 0.0279 0.0293 2
Table 8.  Escape rate for $T_2$ into holes corresponding to a cylinder based at an allowed word of length two. Only two possible values of the escape rate, approximate values are shown
Hole $H=I_{ab}$ $\tilde{\mu}(H)\sim$ $a(z)$ $a(3)$ $\rho(H)\sim$
$I_{01},I_{02},I_{10},I_{20}$ 0.1057 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.1237
$I_{11},I_{22}$ 0.1443 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.1237
$I_{12},I_{21}$ 0.1443 $\dfrac{2z+1}{z(z+1)}$ $\dfrac{7}{12}$ 0.1955
Hole $H=I_{ab}$ $\tilde{\mu}(H)\sim$ $a(z)$ $a(3)$ $\rho(H)\sim$
$I_{01},I_{02},I_{10},I_{20}$ 0.1057 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.1237
$I_{11},I_{22}$ 0.1443 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.1237
$I_{12},I_{21}$ 0.1443 $\dfrac{2z+1}{z(z+1)}$ $\dfrac{7}{12}$ 0.1955
Table 9.  Escape rate for $T_3$ into holes corresponding to a cylinder based at an allowed word of length two. Only four possible values of the escape rate, approximate values are shown
Hole $H=I_{ab}$ $\tilde{\mu}(H)\sim$ $a(z)$ $a(3)$ $\rho(H)\sim$
$I_{00},I_{22}$ 0.1056 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.0810
$I_{01},I_{12}$ 0.1708 $\dfrac{2}{z}$ $\dfrac{2}{3}$ 0.2693
$I_{10},I_{21}$ 0.1056 $\dfrac{2z-1}{z^2}$ $\dfrac{5}{9}$ 0.1188
$I_{11}$ 0.1708 $\dfrac{2z+1}{z(z+1)}$ $\dfrac{7}{12}$ 0.1528
$I_{20}$ 0.0652 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.0810
Hole $H=I_{ab}$ $\tilde{\mu}(H)\sim$ $a(z)$ $a(3)$ $\rho(H)\sim$
$I_{00},I_{22}$ 0.1056 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.0810
$I_{01},I_{12}$ 0.1708 $\dfrac{2}{z}$ $\dfrac{2}{3}$ 0.2693
$I_{10},I_{21}$ 0.1056 $\dfrac{2z-1}{z^2}$ $\dfrac{5}{9}$ 0.1188
$I_{11}$ 0.1708 $\dfrac{2z+1}{z(z+1)}$ $\dfrac{7}{12}$ 0.1528
$I_{20}$ 0.0652 $\dfrac{2}{z+1}$ $\dfrac{1}{2}$ 0.0810
[1]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[2]

Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272

[3]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[4]

Jean-Baptiste Bardet, Bastien Fernandez. Extensive escape rate in lattices of weakly coupled expanding maps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 669-684. doi: 10.3934/dcds.2011.31.669

[5]

Anushaya Mohapatra, William Ott. Memory loss for nonequilibrium open dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3747-3759. doi: 10.3934/dcds.2014.34.3747

[6]

Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739

[7]

David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287

[8]

Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705

[9]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

[10]

Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135

[11]

Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259

[12]

Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829

[13]

Alexander Kemarsky, Frédéric Paulin, Uri Shapira. Escape of mass in homogeneous dynamics in positive characteristic. Journal of Modern Dynamics, 2017, 11: 369-407. doi: 10.3934/jmd.2017015

[14]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[15]

David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253

[16]

Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211

[17]

Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533

[18]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[19]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[20]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (215)
  • HTML views (147)
  • Cited by (0)

Other articles
by authors

[Back to Top]