We investigate the blow-up phenomena for the two-component generalizations of Camassa-Holm equation on the real line. We establish some a local-in-space blow-up criterion for system of coupled equations under certain natural initial profiles. Presented result extends and specifies the earlier blow-up criteria for such type systems.
Citation: |
[1] |
H. Aratyn, J. F. Gomes and A. H. Zimerman, On a negative flow of the AKNS hierarchy and its relation to a two-Component Camassa-Holm equation, Symmetry, Integrability and Geom. Methods Appl., 2 (2006), Paper 070, 12 pp.
doi: 10.3842/SIGMA.2006.070.![]() ![]() ![]() |
[2] |
R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg de Vries hierarchy, Adv. Math., 140 (1998), 190-206.
doi: 10.1006/aima.1998.1768.![]() ![]() ![]() |
[3] |
A. Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschl, Long-time asymptotic for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.
doi: 10.1137/090748500.![]() ![]() ![]() |
[4] |
L. Brandolese and M. F. Cortez, Blowup issues for a class of nonlinear dispersive wave equations, J. Differential Equations, 256 (2014), 3981–3998.
doi: 10.1016/j.jde.2014.03.008.![]() ![]() ![]() |
[5] |
L. Brandolese and M. F. Cortez, On permanent and breaking waves in hyperelastic rods and rings, Journal of Functional Analysis, 266 (2014), 6954-6987.
doi: 10.1016/j.jfa.2014.02.039.![]() ![]() ![]() |
[6] |
L. Brandolese, Local-in-space criteria for blowup in shallow water and dispersive rod equations,, Comm.Math.Phys., 330 (2014), 401-414.
doi: 10.1007/s00220-014-1958-4.![]() ![]() ![]() |
[7] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z.![]() ![]() ![]() |
[8] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.
doi: 10.1142/S0219530507000857.![]() ![]() ![]() |
[9] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.![]() ![]() ![]() |
[10] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.
doi: 10.1016/S0065-2156(08)70254-0.![]() ![]() |
[11] |
R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa–Holm system, Int. Math. Res. Not., 6 (2011), 1381–1416.
doi: 10.1093/imrn/rnq118.![]() ![]() ![]() |
[12] |
R. M. Chen, Y. Liu and Z. Qiao, Stability of solitary waves and global existence of a generalized two-component Camassa–Holm system, Comm. Partial Differ. Equ., 36 (2011), 2162–2188.
doi: 10.1080/03605302.2011.556695.![]() ![]() ![]() |
[13] |
A. Constantin and R. I. Ivanov, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.
doi: 10.1016/j.physleta.2008.10.050.![]() ![]() ![]() |
[14] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equation, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586.![]() ![]() ![]() |
[15] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165–186.
doi: 10.1007/s00205-008-0128-2.![]() ![]() ![]() |
[16] |
A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949–982.
doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.![]() ![]() ![]() |
[17] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293–307.
doi: 10.1093/imamat/hxs033.![]() ![]() ![]() |
[18] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523–535.
doi: 10.1007/s00222-006-0002-5.![]() ![]() ![]() |
[19] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423–431.
doi: 10.1090/S0273-0979-07-01159-7.![]() ![]() ![]() |
[20] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953–970.
doi: 10.1098/rspa.2000.0701.![]() ![]() ![]() |
[21] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier, 50 (2000), 321–362.
doi: 10.5802/aif.1757.![]() ![]() ![]() |
[22] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4pp.
doi: 10.1063/1.1845603.![]() ![]() ![]() |
[23] |
H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193–207.
doi: 10.1007/BF01170373.![]() ![]() ![]() |
[24] |
H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser A. Math. Phys. Eng. Sci., 456 (2000), 331–363.
doi: 10.1098/rspa.2000.0520.![]() ![]() ![]() |
[25] |
J. Escher, O. Lechtenfeld and Z. Y. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.
doi: 10.3934/dcds.2007.19.493.![]() ![]() ![]() |
[26] |
J. Escher, D. Henry, B. Kolev and T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl., 195 (2016), 249-271.
doi: 10.1007/s10231-014-0461-z.![]() ![]() ![]() |
[27] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformation and hereditary symmetries, Phys. D, 4 (1981), 47–66.
doi: 10.1016/0167-2789(81)90004-X.![]() ![]() ![]() |
[28] |
C. X. Guan and Z. Y. Yin, Global weak solutions for a two-component Camassa–Holm shallow water systems, J. Funct. Anal., 260 (2011), 1132–1154.
doi: 10.1016/j.jfa.2010.11.015.![]() ![]() ![]() |
[29] |
G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.
doi: 10.1007/s00209-009-0660-2.![]() ![]() ![]() |
[30] |
G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa–Holm system, J. Funct. Anal., 258 (2011), 4251-4278.
doi: 10.1016/j.jfa.2010.02.008.![]() ![]() ![]() |
[31] |
D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math.Phys., 12 (2005), 342–347.
doi: 10.2991/jnmp.2005.12.3.3.![]() ![]() ![]() |
[32] |
D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, DiscreteContin.Dyn.Syst.Ser.B, 12 (2009), 597-606.
doi: 10.3934/dcdsb.2009.12.597.![]() ![]() ![]() |
[33] |
D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565–1573.
doi: 10.1016/j.na.2008.02.104.![]() ![]() ![]() |
[34] |
A. Himonas, G, Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511–522.
doi: 10.1007/s00220-006-0172-4.![]() ![]() ![]() |
[35] |
A. N. W. Hone, V. Novikov and J. P. Wang, Two-component generalizations of the Camassa–Holm equation equation, Nonlinearity, 30 (2017), 622–658.
doi: 10.1088/1361-6544/aa5490.![]() ![]() ![]() |
[36] |
R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389–396.
doi: 10.1016/j.wavemoti.2009.06.012.![]() ![]() ![]() |
[37] |
Z. Jiang, L. Ni and Y. Zhou, Wave breaking of the Camassa-Holm equation, J. Nonlinear Sci., 22 (2012), 235–245.
doi: 10.1007/s00332-011-9115-0.![]() ![]() ![]() |
[38] |
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224.![]() ![]() ![]() |
[39] |
T. Kato, Quasi-linear equation of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations", Lecture Notes in Math., 448 (1975), 25-70.
![]() ![]() |
[40] |
Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683.![]() ![]() ![]() |
[41] |
Y. Liu and P. Zhang, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system, Int. Math. Res. Not., 2010 (2010), 1981-2021.
doi: 10.1093/imrn/rnp211.![]() ![]() ![]() |
[42] |
T. Lyons, Particle trajectories in extreme Stokes waves over in nite depth, Discrete Contin. Dyn. Syst., 34 (2014), 3095-3107.
doi: 10.3934/dcds.2014.34.3095.![]() ![]() ![]() |
[43] |
T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209-218.
doi: 10.1007/s00021-016-0249-6.![]() ![]() ![]() |
[44] |
T. Lyons, The pressure distribution in extreme Stokes waves, Nonlinear Anal. Real World Appl., 31 (2016), 77-87.
doi: 10.1016/j.nonrwa.2016.01.008.![]() ![]() ![]() |
[45] |
H. P. McKean, Breakdown of a shallow water equation, Asian J. Math., 2 (1998), 867-874.
doi: 10.4310/AJM.1998.v2.n4.a10.![]() ![]() ![]() |
[46] |
E.Novruzov, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation, J. Math. Phys., 54 (2013), 092703, 8pp.
doi: 10.1063/1.4820786.![]() ![]() ![]() |
[47] |
E. Novruzov and A. Hagverdiyev, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541.
doi: 10.1016/j.jde.2014.08.016.![]() ![]() ![]() |
[48] |
E. Novruzov, Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations, J. Differ. Equ., 263 (2017), 5773-5786.
doi: 10.1016/j.jde.2017.06.031.![]() ![]() ![]() |
[49] |
P. Olver and P. Rosenau, Tri-hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900.![]() ![]() ![]() |
[50] |
C. Tian, W. Yan and H. Zhang, The Cauchy problem for the generalized hyperelastic rod equation, Math. Nachr., 287 (2014), 2116-2137.
doi: 10.1002/mana.201200243.![]() ![]() ![]() |
[51] |
S. Yang and T. Xu, Local-in-space blow-up and symmetric waves for a generalized two-component Camassa–Holm system, Applied Mathematics and Computation, 347 (2019), 514-521.
doi: 10.1016/j.amc.2018.10.032.![]() ![]() ![]() |
[52] |
Z. Yin, On the Blow-Up Scenario for the Generalized Camassa–HolmEquation, Communications in Partial Differential Equations, 29 (2004), 867-877.
doi: 10.1081/PDE-120037334.![]() ![]() ![]() |
[53] |
Z. Yin, Well-posedness, global solutions and blow-up phenomena for a nonlinearly dispersive wave equation, J. Evo. Eqns., 4 (2004), 391-419.
doi: 10.1007/s00028-004-0166-7.![]() ![]() ![]() |
[54] |
Y. Zhou and H. Chen, Wave breaking and propagation speed for the Camassa–Holm equation with $k\neq 0$, Nonlinear Anal.: Real World Appl., 12 (2011), 1875-1882.
doi: 10.1016/j.nonrwa.2010.12.005.![]() ![]() ![]() |
[55] |
Y. Zhou, Local well-posedness and blow-up criteria of solutions for a rod equation, Math. Nachr., 278 (2005), 1726-1739.
doi: 10.1002/mana.200310337.![]() ![]() ![]() |
[56] |
M. Zhu and J. Xu, On the wave-breaking phenomena for the periodic two-component Dullin–Gottwald–Holm system, J. Math. Anal. Appl., 391 (2012), 415-428.
doi: 10.1016/j.jmaa.2012.02.058.![]() ![]() ![]() |