\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local-in-space blow-up criteria for two-component nonlinear dispersive wave system

  • * Corresponding author: Emil Novruzov

    * Corresponding author: Emil Novruzov 
Abstract Full Text(HTML) Related Papers Cited by
  • We investigate the blow-up phenomena for the two-component generalizations of Camassa-Holm equation on the real line. We establish some a local-in-space blow-up criterion for system of coupled equations under certain natural initial profiles. Presented result extends and specifies the earlier blow-up criteria for such type systems.

    Mathematics Subject Classification: Primary: 35B44, 35L05, 37K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Aratyn, J. F. Gomes and A. H. Zimerman, On a negative flow of the AKNS hierarchy and its relation to a two-Component Camassa-Holm equation, Symmetry, Integrability and Geom. Methods Appl., 2 (2006), Paper 070, 12 pp. doi: 10.3842/SIGMA.2006.070.
    [2] R. BealsD. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg de Vries hierarchy, Adv. Math., 140 (1998), 190-206.  doi: 10.1006/aima.1998.1768.
    [3] A. Boutet de MonvelA. KostenkoD. Shepelsky and G. Teschl, Long-time asymptotic for the Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.  doi: 10.1137/090748500.
    [4] L. Brandolese and M. F. Cortez, Blowup issues for a class of nonlinear dispersive wave equations, J. Differential Equations, 256 (2014), 3981–3998. doi: 10.1016/j.jde.2014.03.008.
    [5] L. Brandolese and M. F. Cortez, On permanent and breaking waves in hyperelastic rods and rings, Journal of Functional Analysis, 266 (2014), 6954-6987.  doi: 10.1016/j.jfa.2014.02.039.
    [6] L. Brandolese, Local-in-space criteria for blowup in shallow water and dispersive rod equations,, Comm.Math.Phys., 330 (2014), 401-414.  doi: 10.1007/s00220-014-1958-4.
    [7] A. Bressan and A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.
    [8] A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.  doi: 10.1142/S0219530507000857.
    [9] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.
    [10] R. CamassaD. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.  doi: 10.1016/S0065-2156(08)70254-0.
    [11] R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa–Holm system, Int. Math. Res. Not., 6 (2011), 1381–1416. doi: 10.1093/imrn/rnq118.
    [12] R. M. Chen, Y. Liu and Z. Qiao, Stability of solitary waves and global existence of a generalized two-component Camassa–Holm system, Comm. Partial Differ. Equ., 36 (2011), 2162–2188. doi: 10.1080/03605302.2011.556695.
    [13] A. Constantin and R. I. Ivanov, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.
    [14] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equation, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.
    [15] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165–186. doi: 10.1007/s00205-008-0128-2.
    [16] A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949–982. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.
    [17] A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293–307. doi: 10.1093/imamat/hxs033.
    [18] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523–535. doi: 10.1007/s00222-006-0002-5.
    [19] A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423–431. doi: 10.1090/S0273-0979-07-01159-7.
    [20] A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953–970. doi: 10.1098/rspa.2000.0701.
    [21] A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier, 50 (2000), 321–362. doi: 10.5802/aif.1757.
    [22] A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4pp. doi: 10.1063/1.1845603.
    [23] H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193–207. doi: 10.1007/BF01170373.
    [24] H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser A. Math. Phys. Eng. Sci., 456 (2000), 331–363. doi: 10.1098/rspa.2000.0520.
    [25] J. EscherO. Lechtenfeld and Z. Y. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513.  doi: 10.3934/dcds.2007.19.493.
    [26] J. EscherD. HenryB. Kolev and T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl., 195 (2016), 249-271.  doi: 10.1007/s10231-014-0461-z.
    [27] A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformation and hereditary symmetries, Phys. D, 4 (1981), 47–66. doi: 10.1016/0167-2789(81)90004-X.
    [28] C. X. Guan and Z. Y. Yin, Global weak solutions for a two-component Camassa–Holm shallow water systems, J. Funct. Anal., 260 (2011), 1132–1154. doi: 10.1016/j.jfa.2010.11.015.
    [29] G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.  doi: 10.1007/s00209-009-0660-2.
    [30] G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa–Holm system, J. Funct. Anal., 258 (2011), 4251-4278.  doi: 10.1016/j.jfa.2010.02.008.
    [31] D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math.Phys., 12 (2005), 342–347. doi: 10.2991/jnmp.2005.12.3.3.
    [32] D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, DiscreteContin.Dyn.Syst.Ser.B, 12 (2009), 597-606.  doi: 10.3934/dcdsb.2009.12.597.
    [33] D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565–1573. doi: 10.1016/j.na.2008.02.104.
    [34] A. Himonas, G, Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511–522. doi: 10.1007/s00220-006-0172-4.
    [35] A. N. W. Hone, V. Novikov and J. P. Wang, Two-component generalizations of the Camassa–Holm equation equation, Nonlinearity, 30 (2017), 622–658. doi: 10.1088/1361-6544/aa5490.
    [36] R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389–396. doi: 10.1016/j.wavemoti.2009.06.012.
    [37] Z. Jiang, L. Ni and Y. Zhou, Wave breaking of the Camassa-Holm equation, J. Nonlinear Sci., 22 (2012), 235–245. doi: 10.1007/s00332-011-9115-0.
    [38] R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.  doi: 10.1017/S0022112001007224.
    [39] T. Kato, Quasi-linear equation of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations", Lecture Notes in Math., 448 (1975), 25-70. 
    [40] Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.
    [41] Y. Liu and P. Zhang, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system, Int. Math. Res. Not., 2010 (2010), 1981-2021.  doi: 10.1093/imrn/rnp211.
    [42] T. Lyons, Particle trajectories in extreme Stokes waves over in nite depth, Discrete Contin. Dyn. Syst., 34 (2014), 3095-3107.  doi: 10.3934/dcds.2014.34.3095.
    [43] T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209-218.  doi: 10.1007/s00021-016-0249-6.
    [44] T. Lyons, The pressure distribution in extreme Stokes waves, Nonlinear Anal. Real World Appl., 31 (2016), 77-87.  doi: 10.1016/j.nonrwa.2016.01.008.
    [45] H. P. McKean, Breakdown of a shallow water equation, Asian J. Math., 2 (1998), 867-874.  doi: 10.4310/AJM.1998.v2.n4.a10.
    [46] E.Novruzov, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation, J. Math. Phys., 54 (2013), 092703, 8pp. doi: 10.1063/1.4820786.
    [47] E. Novruzov and A. Hagverdiyev, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541.  doi: 10.1016/j.jde.2014.08.016.
    [48] E. Novruzov, Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations, J. Differ. Equ., 263 (2017), 5773-5786.  doi: 10.1016/j.jde.2017.06.031.
    [49] P. Olver and P. Rosenau, Tri-hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.  doi: 10.1103/PhysRevE.53.1900.
    [50] C. TianW. Yan and H. Zhang, The Cauchy problem for the generalized hyperelastic rod equation, Math. Nachr., 287 (2014), 2116-2137.  doi: 10.1002/mana.201200243.
    [51] S. Yang and T. Xu, Local-in-space blow-up and symmetric waves for a generalized two-component Camassa–Holm system, Applied Mathematics and Computation, 347 (2019), 514-521.  doi: 10.1016/j.amc.2018.10.032.
    [52] Z. Yin, On the Blow-Up Scenario for the Generalized Camassa–HolmEquation, Communications in Partial Differential Equations, 29 (2004), 867-877.  doi: 10.1081/PDE-120037334.
    [53] Z. Yin, Well-posedness, global solutions and blow-up phenomena for a nonlinearly dispersive wave equation, J. Evo. Eqns., 4 (2004), 391-419.  doi: 10.1007/s00028-004-0166-7.
    [54] Y. Zhou and H. Chen, Wave breaking and propagation speed for the Camassa–Holm equation with $k\neq 0$, Nonlinear Anal.: Real World Appl., 12 (2011), 1875-1882.  doi: 10.1016/j.nonrwa.2010.12.005.
    [55] Y. Zhou, Local well-posedness and blow-up criteria of solutions for a rod equation, Math. Nachr., 278 (2005), 1726-1739.  doi: 10.1002/mana.200310337.
    [56] M. Zhu and J. Xu, On the wave-breaking phenomena for the periodic two-component Dullin–Gottwald–Holm system, J. Math. Anal. Appl., 391 (2012), 415-428.  doi: 10.1016/j.jmaa.2012.02.058.
  • 加载中
SHARE

Article Metrics

HTML views(354) PDF downloads(336) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return