-
Previous Article
Escape dynamics for interval maps
- DCDS Home
- This Issue
-
Next Article
Measure dynamics with Probability Vector Fields and sources
Bowen entropy for fixed-point free flows
1. | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing, Jiangsu 210046, China |
2. | School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China |
In this paper, we devote to the study of the Bowen's entropy for fixed-point free flows and show that the Bowen entropy of the whole compact space is equal to the topological entropy. To obtain this result, we establish the Brin-Katok's local entropy formula for fixed-point free flows in ergodic case.
References:
[1] |
L. M. Abramov,
On the entropy of a flow, Dok. Akad. Nauk SSSR, 128 (1959), 873-875.
|
[2] |
R. Bowen,
Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[3] |
R. Bowen,
Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.
doi: 10.2307/2373590. |
[4] |
R. Bowen,
Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X. |
[5] |
R. Bowen and D. Ruelle,
The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.
doi: 10.1007/BF01389848. |
[6] |
L. Breiman,
The individual theorem of information theory, Ann. Math. Statist., 28 (1957), 809-811.
doi: 10.1214/aoms/1177706899. |
[7] |
M. Brin and A. Katok,
On local entropy, Lecture Notes in Math., 1007 (1983), 30-38.
doi: 10.1007/BFb0061408. |
[8] |
D. Dou, M. Fan and H. Qiu,
Topological entropy on subsets for fixed-point free flows, Disc. Contin. Dyn. Syst., 37 (2017), 6319-6331.
doi: 10.3934/dcds.2017273. |
[9] |
D. Feng and W. Huang,
Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[10] |
B. McMillan,
The basic theorems of information theory, Ann. Math. Statist., 24 (1953), 196-219.
doi: 10.1214/aoms/1177729028. |
[11] |
C. E. Shannon,
A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[12] |
J. Shen and Y. Zhao, Entropy of a flow on non-compact sets, Open Syst. Inf. Dyn., 19 (2012), 1250015, 10 pp.
doi: 10.1142/S1230161212500151. |
[13] |
W. Sun,
Measure-theoretic entropy for flows, Sci. China Ser. A, 40 (1997), 725-731.
doi: 10.1007/BF02878695. |
[14] |
W. Sun and E. Vargas,
Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S), 30 (1999), 315-333.
doi: 10.1007/BF01239009. |
[15] |
R. F. Thomas,
Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.
doi: 10.1017/S0143385700004235. |
[16] |
R. F. Thomas,
Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.
doi: 10.1090/S0002-9947-1990-1010414-5. |
[17] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[18] |
D. Zheng and E. Chen,
Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911.
doi: 10.1007/s11856-016-1312-y. |
show all references
References:
[1] |
L. M. Abramov,
On the entropy of a flow, Dok. Akad. Nauk SSSR, 128 (1959), 873-875.
|
[2] |
R. Bowen,
Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[3] |
R. Bowen,
Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.
doi: 10.2307/2373590. |
[4] |
R. Bowen,
Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X. |
[5] |
R. Bowen and D. Ruelle,
The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.
doi: 10.1007/BF01389848. |
[6] |
L. Breiman,
The individual theorem of information theory, Ann. Math. Statist., 28 (1957), 809-811.
doi: 10.1214/aoms/1177706899. |
[7] |
M. Brin and A. Katok,
On local entropy, Lecture Notes in Math., 1007 (1983), 30-38.
doi: 10.1007/BFb0061408. |
[8] |
D. Dou, M. Fan and H. Qiu,
Topological entropy on subsets for fixed-point free flows, Disc. Contin. Dyn. Syst., 37 (2017), 6319-6331.
doi: 10.3934/dcds.2017273. |
[9] |
D. Feng and W. Huang,
Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[10] |
B. McMillan,
The basic theorems of information theory, Ann. Math. Statist., 24 (1953), 196-219.
doi: 10.1214/aoms/1177729028. |
[11] |
C. E. Shannon,
A mathematical theory of communication, Bell System Tech. J., 27 (1948), 623-656.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[12] |
J. Shen and Y. Zhao, Entropy of a flow on non-compact sets, Open Syst. Inf. Dyn., 19 (2012), 1250015, 10 pp.
doi: 10.1142/S1230161212500151. |
[13] |
W. Sun,
Measure-theoretic entropy for flows, Sci. China Ser. A, 40 (1997), 725-731.
doi: 10.1007/BF02878695. |
[14] |
W. Sun and E. Vargas,
Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S), 30 (1999), 315-333.
doi: 10.1007/BF01239009. |
[15] |
R. F. Thomas,
Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.
doi: 10.1017/S0143385700004235. |
[16] |
R. F. Thomas,
Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.
doi: 10.1090/S0002-9947-1990-1010414-5. |
[17] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[18] |
D. Zheng and E. Chen,
Bowen entropy for actions of amenable groups, Israel J. Math., 212 (2016), 895-911.
doi: 10.1007/s11856-016-1312-y. |
[1] |
Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273 |
[2] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[3] |
Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024 |
[4] |
L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183 |
[5] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[6] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[7] |
Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421 |
[8] |
Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041 |
[9] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[10] |
Adeolu Taiwo, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2733-2759. doi: 10.3934/jimo.2020092 |
[11] |
Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467 |
[12] |
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123 |
[13] |
Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497 |
[14] |
Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267 |
[15] |
Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063 |
[16] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[17] |
Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363 |
[18] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[19] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045 |
[20] |
Tomoo Yokoyama. Refinements of topological invariants of flows. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2295-2331. doi: 10.3934/dcds.2021191 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]