    November  2019, 39(11): 6299-6353. doi: 10.3934/dcds.2019275

## Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition

 1 Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan 2 Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan 3 Department of Mathematics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

* Corresponding author: Kuranosuke Nishimura

Received  November 2018 Published  August 2019

Fund Project: The first author is partially supported by JSPS Grant-in-Aid for Early-Career Scientists JP18K13444. The second author is supported in part by Grant-in-Aid for Young Scientists (B) JP24740086 and JP16K17626.

We consider a mass-critical system of nonlinear Schrödinger equations
 $\left\{ \begin{split} i\partial_t u + \;\; \Delta u & = \bar{u}v,\\ i\partial_t v +\kappa \Delta v & = u^2, \end{split} \right. \qquad (t,x)\in \mathbb{R}\times \mathbb{R}^4,$
where
 $(u,v)$
is a
 $\mathbb{C}^2$
-valued unknown function and
 $\kappa >0$
is a constant. If
 $\kappa = 1/2$
, we say the equation satisfies mass-resonance condition. We are interested in the scattering problem of this equation under the condition
 $M(u,v) , where $ M(u,v) $denotes the mass and $ (\phi ,\psi) $is a ground state. In the mass-resonance case, we prove scattering by the argument of Dodson . Scattering is also obtained without mass-resonance condition under the restriction that $ (u,v) $is radially symmetric. Citation: Takahisa Inui, Nobu Kishimoto, Kuranosuke Nishimura. Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6299-6353. doi: 10.3934/dcds.2019275 ##### References:   H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.  Google Scholar  M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226. doi: 10.1016/j.anihpc.2009.01.011.  Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in$\mathbb{R}^3$, Ann. of Math.(2), 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.  Google Scholar  B. Dodson, Global well-posedness and scattering for the defocusing,$L^2$-critical nonlinear Schrödinger equation when$d\geq3$, J. Amer. Math. Soc., 25 (2012), 429-463. doi: 10.1090/S0894-0347-2011-00727-3.  Google Scholar  B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618. doi: 10.1016/j.aim.2015.04.030.  Google Scholar  B. Dodson, Global well-posedness and scattering for the defocusing,$L^2$critical, nonlinear Schrödinger equation when$d = 1$, Amer. J. Math., 138 (2016), 531-569. doi: 10.1353/ajm.2016.0016.  Google Scholar  B. Dodson, Global well-posedness and scattering for the defocusing,$L^2$-critical, nonlinear Schrödinger equation when$d = 2$, Duke Math. J., 165 (2016), 3435-3516. doi: 10.1215/00127094-3673888.  Google Scholar  T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250. doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar  M. Hamano, Global dynamics below the ground state for the quadratic schödinger system in$5d$, preprint, arXiv: 1805.12245, 2018. Google Scholar  N. Hayashi, C. H. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426. doi: 10.7153/dea-03-26.  Google Scholar  N. Hayashi, T. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690. doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar  C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.  Google Scholar  R. Killip and M. Vișan, Nonlinear schrödinger equations at critical regularity, Evolution equations, Clay Math. Proc., Amer. Math. Soc., Providence, RI, 17 (2013), 325-437. Google Scholar  H. Koch, D. Tataru and M. Vișan, Dispersive Equations and Nonlinear Waves, Generalized Korteweg-de Vries, nonlinear Schrödinger, wave and Schrödinger maps. Oberwolfach Seminars, 45. Birkhäuser/Springer, Basel, 2014. Google Scholar  M. K. Kwong, Uniqueness of positive solutions of$\Delta u-u+u^p = 0$in$\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.  Google Scholar  F. Merle and L. Vega, Compactness at blow-up time for$L^2$solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, (1998), 399-425. Google Scholar  T. Ozawa and H. Sunagawa, Small data blow-up for a system of nonlinear Schrödinger equations, J. Math. Anal. Appl., 399 (2013), 147-155. doi: 10.1016/j.jmaa.2012.10.003.  Google Scholar  T. Tao, M. Visan and X. Y. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202. doi: 10.1215/S0012-7094-07-14015-8.  Google Scholar  T. Tao, M. Visan and X. Y. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343. doi: 10.1080/03605300701588805.  Google Scholar  T. Tao, M. Visan and X. Y. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math., 20 (2008), 881-919. doi: 10.1515/FORUM.2008.042.  Google Scholar  M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar show all references ##### References:   H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.  Google Scholar  M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226. doi: 10.1016/j.anihpc.2009.01.011.  Google Scholar  J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in$\mathbb{R}^3$, Ann. of Math.(2), 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.  Google Scholar  B. Dodson, Global well-posedness and scattering for the defocusing,$L^2$-critical nonlinear Schrödinger equation when$d\geq3$, J. Amer. Math. Soc., 25 (2012), 429-463. doi: 10.1090/S0894-0347-2011-00727-3.  Google Scholar  B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618. doi: 10.1016/j.aim.2015.04.030.  Google Scholar  B. Dodson, Global well-posedness and scattering for the defocusing,$L^2$critical, nonlinear Schrödinger equation when$d = 1$, Amer. J. Math., 138 (2016), 531-569. doi: 10.1353/ajm.2016.0016.  Google Scholar  B. Dodson, Global well-posedness and scattering for the defocusing,$L^2$-critical, nonlinear Schrödinger equation when$d = 2$, Duke Math. J., 165 (2016), 3435-3516. doi: 10.1215/00127094-3673888.  Google Scholar  T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250. doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar  M. Hamano, Global dynamics below the ground state for the quadratic schödinger system in$5d$, preprint, arXiv: 1805.12245, 2018. Google Scholar  N. Hayashi, C. H. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426. doi: 10.7153/dea-03-26.  Google Scholar  N. Hayashi, T. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690. doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar  C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.  Google Scholar  R. Killip and M. Vișan, Nonlinear schrödinger equations at critical regularity, Evolution equations, Clay Math. Proc., Amer. Math. Soc., Providence, RI, 17 (2013), 325-437. Google Scholar  H. Koch, D. Tataru and M. Vișan, Dispersive Equations and Nonlinear Waves, Generalized Korteweg-de Vries, nonlinear Schrödinger, wave and Schrödinger maps. Oberwolfach Seminars, 45. Birkhäuser/Springer, Basel, 2014. Google Scholar  M. K. Kwong, Uniqueness of positive solutions of$\Delta u-u+u^p = 0$in$\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.  Google Scholar  F. Merle and L. Vega, Compactness at blow-up time for$L^2$solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, (1998), 399-425. Google Scholar  T. Ozawa and H. Sunagawa, Small data blow-up for a system of nonlinear Schrödinger equations, J. Math. Anal. Appl., 399 (2013), 147-155. doi: 10.1016/j.jmaa.2012.10.003.  Google Scholar  T. Tao, M. Visan and X. Y. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202. doi: 10.1215/S0012-7094-07-14015-8.  Google Scholar  T. Tao, M. Visan and X. Y. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343. doi: 10.1080/03605300701588805.  Google Scholar  T. Tao, M. Visan and X. Y. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math., 20 (2008), 881-919. doi: 10.1515/FORUM.2008.042.  Google Scholar  M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar   Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the$L^2\$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909  Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084  Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323  Rowan Killip, Satoshi Masaki, Jason Murphy, Monica Visan. The radial mass-subcritical NLS in negative order Sobolev spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 553-583. doi: 10.3934/dcds.2019023  Casey Jao. Energy-critical NLS with potentials of quadratic growth. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 563-587. doi: 10.3934/dcds.2018025  Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066  Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216  Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191  Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021171  Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511  Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047  Yongfu Wang. Mass concentration phenomenon to the two-dimensional Cauchy problem of the compressible Magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4973-4994. doi: 10.3934/cpaa.2020223  M. Pellicer, J. Solà-Morales. Spectral analysis and limit behaviours in a spring-mass system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 563-577. doi: 10.3934/cpaa.2008.7.563  Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049  Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011  Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481  Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258  Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106  Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334  David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311

2020 Impact Factor: 1.392