In this paper, we provide a technical result on the existence of Gibbs $ cu $-states for diffeomorphisms with dominated splittings. More precisely, for given $ C^2 $ diffeomorphim $ f $ with dominated splitting $ T_{\Lambda}M = E\oplus F $ on an attractor $ \Lambda $, by considering some suitable random perturbation of $ f $, we show that for any zero noise limit of ergodic stationary measures, if it has positive integrable Lyapunov exponents along invariant sub-bundle $ E $, then its ergodic components contain Gibbs $ cu $-states associated to $ E $. With this technique, we show the existence of SRB measures and physical measures for some systems exhibiting dominated splittings and weak hyperbolicity.
Citation: |
[1] |
J. F. Alves, V. Araújo and C. H. Vásquez, Stochastic stability of non-uniformly hyperbolic diffeomorphisms, Stochastics and Dynamics, 7 (2007), 299-333.
doi: 10.1142/S0219493707002049.![]() ![]() ![]() |
[2] |
J. F. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057.![]() ![]() ![]() |
[3] |
J. F. Alves, C. L. Dias, S. Luzzatto and V. Pinheiro, SRB measures for partially hyperbolic systems whose central direction is weakly expanding, J. Eur. Math. Soc. (JEMS), 19 (2017), 2911-2946.
doi: 10.4171/JEMS/731.![]() ![]() ![]() |
[4] |
J. F. Alves, Statistical Analysis of Non-Uniformly Expanding Dynamical Systems, IMPA, Rio De Janeiro, 2003.
![]() ![]() |
[5] |
M. Andersson and C. H. Vásquez, On mostly expanding diffeomorphisms, Ergodic Theory Dynam. Systems, 38 (2018), 2838-2859.
doi: 10.1017/etds.2017.17.![]() ![]() ![]() |
[6] |
V. Araújo, Attractors and time averages for random maps, Ann. Inst. H. Poincar Anal. Non Linaire., 17 (2000), 307-369.
doi: 10.1016/S0294-1449(00)00112-8.![]() ![]() ![]() |
[7] |
V. Araújo, Infinitely many stochastically stable attractors, Nonlinearity, 14 (2001), 583-596.
doi: 10.1088/0951-7715/14/3/308.![]() ![]() ![]() |
[8] |
A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Trans. Amer. Math. Soc., 364 (2012), 2883-2907.
doi: 10.1090/S0002-9947-2012-05423-7.![]() ![]() ![]() |
[9] |
L. Barreira and Y. B. Pesin, Lyapunov Exponents and Smooth Ergodic Theory, Univ. Lect. Ser., 23. American Mathematical Society, Providence RI, 2002.
![]() ![]() |
[10] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, A Global Geometric and Probabilistic Perspective, Encyclopaedia of Math Sci., 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005.
![]() ![]() |
[11] |
C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.
doi: 10.1007/BF02810585.![]() ![]() ![]() |
[12] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, , Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin-New York, 1975.
![]() ![]() |
[13] |
R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.
![]() |
[14] |
Y. L. Cao and D. W. Yang, On pesin's entropy formula for dominated splittings without mixed behavior, J. Differ. Equ., 261 (2016), 3964-3986.
doi: 10.1016/j.jde.2016.06.012.![]() ![]() ![]() |
[15] |
W. Cowieson and L.-S. Young, SRB measures as zero-noise limits, Ergod. Th. & Dynam. Sys., 25 (2005), 1115-1138.
doi: 10.1017/S0143385704000604.![]() ![]() ![]() |
[16] |
J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.
doi: 10.1103/RevModPhys.57.617.![]() ![]() ![]() |
[17] |
M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), (1970), 133–163.
![]() ![]() |
[18] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
[19] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms Part Ⅰ: Characterization of measures satisfying Pesin's entropy formula, Ann. Math., 122 (1985), 509-539.
doi: 10.2307/1971328.![]() ![]() ![]() |
[20] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms: Part Ⅱ: Characterization of measures satisfying Pesin's entropy formula, Ann. Math., 122 (1985), 540-574.
doi: 10.2307/1971329.![]() ![]() ![]() |
[21] |
P.-D Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995.
doi: 10.1007/BFb0094308.![]() ![]() ![]() |
[22] |
P.-D. Liu and K. N. Lu, A Note on partially hyperbolic attractors: Entropy conjecture and SRB measures, Discrete Contin. Dyn. Syst., 35 (2015), 341-352.
doi: 10.3934/dcds.2015.35.341.![]() ![]() ![]() |
[23] |
R. Mañé, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8. Springer-Verlag, 1987.
doi: 10.1007/978-3-642-70335-5.![]() ![]() ![]() |
[24] |
Z. Y. Mi, Y. L. Cao and D. W. Yang, SRB measures for attractors with continuous invariant splittings, Math. Z., 288 (2018), 135-165.
doi: 10.1007/s00209-017-1883-2.![]() ![]() ![]() |
[25] |
Z. Y. Mi, Y. L. Cao and D. W. Yang, A note on partially hyperbolic systems with mostly expanding centers, Proc. Amer. Math. Soc., 145 (2017), 5299-5313.
doi: 10.1090/proc/13701.![]() ![]() ![]() |
[26] |
J. Palis, A global view of Dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (1999), 339-351.
![]() |
[27] |
Y. B. Pesin and Y. G. Sinaĭ, Gibbs measures for partially hyperbolic attractors, Ergod. Th. & Dynam. Sys., 2 (1982), 417-438.
doi: 10.1017/S014338570000170X.![]() ![]() ![]() |
[28] |
V. A. Rokhlin, On the fundamental ideas of measure theorey, A. M. S. Translations, 1952 (1952), 55 pp.
![]() ![]() |
[29] |
D. Ruelle, A measure associated with Axiom-A attractors, Amer. J. Math., 98 (1976), 619-654.
doi: 10.2307/2373810.![]() ![]() ![]() |
[30] |
J. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64.
![]() ![]() |
[31] |
C. H. Vásquez, Statistical stability for diffeomorphisms with dominated splitting, Ergod. Th. & Dynam. Sys., 27 (2007), 253-283.
doi: 10.1017/S0143385706000721.![]() ![]() ![]() |
[32] |
M. Viana, Stochastic Dynamics of Deterministic Systems, Lect. Notes XXI Braz. Math Colloq., IMPA, 1997.
![]() |
[33] |
M. Viana, Dynamics: A probabilistic and geometric perspective, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., 1 (1998), 557–578.
![]() ![]() |
[34] |
M. Viana, Lecture Notes on Attractors and Physical Measures, Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999.
![]() ![]() |
[35] |
Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10. Birkhäuser Boston, Inc., Boston, MA, 1986.
doi: 10.1007/978-1-4684-9175-3.![]() ![]() ![]() |
[36] |
M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, 151. Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316422601.![]() ![]() ![]() |
[37] |
L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.
doi: 10.1023/A:1019762724717.![]() ![]() ![]() |
[38] |
Y. T. Zang, D. W. Yang and Y. L. Cao, The entropy conjecture for dominated splitting with multi 1D centers via upper semi-continuity of the metric entropy, Nonlinearity, 30 (2017), 3076-3087.
doi: 10.1088/1361-6544/aa773c.![]() ![]() ![]() |