We establish almost sure invariance principles (ASIP), a strong form of approximation by Brownian motion, for non-stationary time series arising as observations on sequential maps possessing an indifferent fixed point. These transformations are obtained by perturbing the slope in the Pomeau-Manneville map. Quenched ASIP for random compositions of these maps is also obtained.
Citation: |
[1] |
R. Aimino, H. Y. Hu, M. Nicol, A. Török and S. Vaienti, Polynomial loss of memory for maps of the interval with a neutral fixed point, Discrete Contin. Dyn. Syst., 35 (2015), 793-806.
doi: 10.3934/dcds.2015.35.793.![]() ![]() ![]() |
[2] |
C. Cuny and F. Merlevède, Strong invariance principles with rate for "reverse" martingale differences and applications, J. Theoret. Probab., 28 (2015), 137-183.
doi: 10.1007/s10959-013-0506-z.![]() ![]() ![]() |
[3] |
D. Dragičević, G. Froyland, C. González-Tokman and S. Vaienti, Almost sure invariance principle for random piecewise expanding maps, Nonlinearity, 31 (2018), 2252-2280.
doi: 10.1088/1361-6544/aaaf4b.![]() ![]() ![]() |
[4] |
N. Haydn, M. Nicol, A. Török and S. Vaienti, Almost sure invariance principle for sequential and non-stationary dynamical systems, Trans. Amer. Math. Soc., 369 (2017), 5293-5316.
doi: 10.1090/tran/6812.![]() ![]() ![]() |
[5] |
O. Hella and J. Leppänen, Central limit theorems with a rate of convergence for time-dependent intermittent maps, arXiv E-Prints, arXiv: 1811.11170.
![]() |
[6] |
M. Nicol, A. Török and S. Vaienti, Central limit theorems for sequential and random intermittent dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1127-1153.
doi: 10.1017/etds.2016.69.![]() ![]() ![]() |
[7] |
D. J. Scott and R. M. Huggins, On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales, Bull. Austral. Math. Soc., 27 (1983), 443-459.
doi: 10.1017/S0004972700025946.![]() ![]() ![]() |
[8] |
V. G. Sprindžuk, Metric Theory of Diophantine Approximations, Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D. C., A Halsted Press Book, John Wiley & Sons, New York-Toronto, Ont.-London, 1979.
![]() ![]() |