November  2019, 39(11): 6631-6642. doi: 10.3934/dcds.2019288

Relative entropy dimension of topological dynamical systems

Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Received  February 2019 Revised  April 2019 Published  August 2019

Fund Project: (*) This research is supported by NSFC(11801193).

We introduce the notion of relative topological entropy dimension to classify the different intermediate levels of relative complexity for factor maps. By considering the dimension or ''density" of special class of sequences along which the entropy is encountered, we provide equivalent definitions of relative entropy dimension. As applications, we investigate the corresponding localization theory and obtain a disjointness theorem involving relative entropy dimension.

Citation: Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288
References:
[1]

F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993), 465-478.  doi: 10.24033/bsmf.2216.

[2]

M. de Carvalho, Entropy dimension of dynamical systems, Portugal. Math., 54 (1997), 19-40. 

[3]

D. DouW. Huang and K. Park, Entropy dimension of topological dynamical systems, Trans. Amer. Math. Soc., 363 (2011), 659-680.  doi: 10.1090/S0002-9947-2010-04906-2.

[4]

D. DouW. Huang and K. Park, Entropy dimension of measure preserving systems, Trans. Amer. Math. Soc., 371 (2019), 7029-7065.  doi: 10.1090/tran/7542.

[5]

D. Dou and K. K. Park, Examples of entropy generating sequence, Sci. China Math., 54 (2011), 531-538.  doi: 10.1007/s11425-010-4152-y.

[6]

S. Ferenczi and K. K. Park, Entropy dimensions and a class of constructive examples, Discrete Cont. Dyn. Syst., 17 (2007), 133-141.  doi: 10.3934/dcds.2007.17.133.

[7]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.

[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. 
[9]

T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.  doi: 10.1112/plms/s3-29.2.331.

[10]

W. HuangS. M. LiS. Shao and X. D. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems, 23 (2003), 1505-1523.  doi: 10.1017/S0143385702001724.

[11]

W. HuangK. K. Park and X. D. Ye, Topological disjointness for entropy zero systems, Bull. Soc. Math. France, 135 (2007), 259-282.  doi: 10.24033/bsmf.2534.

[12]

W. Huang and X. D. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005), 669-694.  doi: 10.1090/S0002-9947-04-03540-8.

[13]

W. Huang and X. D. Ye, Combinatorial lemmas and applications to dynamics, Adv. Math., 220 (2009), 1689-1716.  doi: 10.1016/j.aim.2008.11.009.

[14]

W. HuangX. D. Ye and G. H. Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math., 158 (2007), 249-283.  doi: 10.1007/s11856-007-0013-y.

[15]

P. Hulse, Sequence entropy and subsequence generators, J. London Math. Soc., 26 (1982), 441-450.  doi: 10.1112/jlms/s2-26.3.441.

[16]

T. Kamae and L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems, 22 (2002), 1191-1199.  doi: 10.1017/S0143385702000585.

[17]

A. Katok and J.-P. Thouvenot, Slow entropy type invanriants and smooth realization of commuting measure-preserving transformations, Ann. Inst. Henri Poincare Probab. Statist., 33 (1997), 323-338.  doi: 10.1016/S0246-0203(97)80094-5.

[18]

D. Kerr and H. Li, Independence in topological C*-dynamics, Math. Ann., 338 (2007), 869-926. 

[19]

A. G. Kušhnirenkov, Metric invariants of entropy type, Uspekhi Mat. Nauk, 22 (1967), 57-65. 

show all references

References:
[1]

F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France, 121 (1993), 465-478.  doi: 10.24033/bsmf.2216.

[2]

M. de Carvalho, Entropy dimension of dynamical systems, Portugal. Math., 54 (1997), 19-40. 

[3]

D. DouW. Huang and K. Park, Entropy dimension of topological dynamical systems, Trans. Amer. Math. Soc., 363 (2011), 659-680.  doi: 10.1090/S0002-9947-2010-04906-2.

[4]

D. DouW. Huang and K. Park, Entropy dimension of measure preserving systems, Trans. Amer. Math. Soc., 371 (2019), 7029-7065.  doi: 10.1090/tran/7542.

[5]

D. Dou and K. K. Park, Examples of entropy generating sequence, Sci. China Math., 54 (2011), 531-538.  doi: 10.1007/s11425-010-4152-y.

[6]

S. Ferenczi and K. K. Park, Entropy dimensions and a class of constructive examples, Discrete Cont. Dyn. Syst., 17 (2007), 133-141.  doi: 10.3934/dcds.2007.17.133.

[7]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.

[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. 
[9]

T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.  doi: 10.1112/plms/s3-29.2.331.

[10]

W. HuangS. M. LiS. Shao and X. D. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems, 23 (2003), 1505-1523.  doi: 10.1017/S0143385702001724.

[11]

W. HuangK. K. Park and X. D. Ye, Topological disjointness for entropy zero systems, Bull. Soc. Math. France, 135 (2007), 259-282.  doi: 10.24033/bsmf.2534.

[12]

W. Huang and X. D. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357 (2005), 669-694.  doi: 10.1090/S0002-9947-04-03540-8.

[13]

W. Huang and X. D. Ye, Combinatorial lemmas and applications to dynamics, Adv. Math., 220 (2009), 1689-1716.  doi: 10.1016/j.aim.2008.11.009.

[14]

W. HuangX. D. Ye and G. H. Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math., 158 (2007), 249-283.  doi: 10.1007/s11856-007-0013-y.

[15]

P. Hulse, Sequence entropy and subsequence generators, J. London Math. Soc., 26 (1982), 441-450.  doi: 10.1112/jlms/s2-26.3.441.

[16]

T. Kamae and L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems, 22 (2002), 1191-1199.  doi: 10.1017/S0143385702000585.

[17]

A. Katok and J.-P. Thouvenot, Slow entropy type invanriants and smooth realization of commuting measure-preserving transformations, Ann. Inst. Henri Poincare Probab. Statist., 33 (1997), 323-338.  doi: 10.1016/S0246-0203(97)80094-5.

[18]

D. Kerr and H. Li, Independence in topological C*-dynamics, Math. Ann., 338 (2007), 869-926. 

[19]

A. G. Kušhnirenkov, Metric invariants of entropy type, Uspekhi Mat. Nauk, 22 (1967), 57-65. 

[1]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[2]

José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023

[3]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[4]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic and Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

[5]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

[6]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[7]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[8]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[9]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

[10]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[11]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control and Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[12]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[13]

Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139

[14]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[15]

Chenxi Wu. The relative cohomology of abelian covers of the flat pillowcase. Journal of Modern Dynamics, 2015, 9: 123-140. doi: 10.3934/jmd.2015.9.123

[16]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[17]

Francesco Fassò, Simone Passarella, Marta Zoppello. Control of locomotion systems and dynamics in relative periodic orbits. Journal of Geometric Mechanics, 2020, 12 (3) : 395-420. doi: 10.3934/jgm.2020022

[18]

Simon Scott. Relative zeta determinants and the geometry of the determinant line bundle. Electronic Research Announcements, 2001, 7: 8-16.

[19]

János Kollár. Relative mmp without $ \mathbb{Q} $-factoriality. Electronic Research Archive, 2021, 29 (5) : 3193-3203. doi: 10.3934/era.2021033

[20]

Yan Huang. On Hausdorff dimension of the set of non-ergodic directions of two-genus double cover of tori. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2395-2409. doi: 10.3934/dcds.2018099

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (335)
  • HTML views (119)
  • Cited by (0)

Other articles
by authors

[Back to Top]