Advanced Search
Article Contents
Article Contents

Scattering of radial data in the focusing NLS and generalized Hartree equations

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the focusing nonlinear Schrödinger equation $ i u_t + \Delta u + |u|^{p-1}u = 0 $, $ p>1, $ and the generalized Hartree equation $ iv_t + \Delta v + (|x|^{-(N-\gamma)}\ast |v|^p)|v|^{p-2}u = 0 $, $ p\geq2 $, $ \gamma<N $, in the mass-supercritical and energy-subcritical setting. With the initial data $ u_0\in H^1( \mathbb R^N) $ the characterization of solutions behavior under the mass-energy threshold is known for the NLS case from the works of Holmer and Roudenko in the radial [15] and Duyckaerts, Holmer and Roudenko in the nonradial setting [10] and further generalizations (see [1,11,13]); for the generalized Hartree case it is developed in [2]. In particular, scattering is proved following the road map developed by Kenig and Merle [16], using the concentration compactness and rigidity approach, which is now standard in the dispersive problems.

    In this work we give an alternative proof of scattering for both NLS and gHartree equations in the radial setting in the inter-critical regime, following the approach of Dodson and Murphy [8] for the focusing 3d cubic NLS equation, which relies on the scattering criterion of Tao [26], combined with the radial Sobolev and Morawetz-type estimates. We first generalize it in the NLS case, and then extend it to the nonlocal Hartree-type potential. This method provides a simplified way to prove scattering, which may be useful in other contexts.

    Mathematics Subject Classification: Primary: 35Q55, 35Q40; Secondary: 37K40, 37K05.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672.  doi: 10.1215/21562261-2265914.
    [2] A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equations, preprint, arXiv: 1904.05339.
    [3] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.
    [4] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.
    [5] L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, preprint, arXiv: 1905.02663.
    [6] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.
    [7] J. Colliander and S. Roudenko, Mass concentration window size and Strichartz norm divergence rate for the L2-critical nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ., 4 (2007), 613-627.  doi: 10.1142/S0219891607001288.
    [8] B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.
    [9] B. Dodson and J. Murphy, A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.  doi: 10.4310/MRL.2018.v25.n6.a5.
    [10] T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.
    [11] D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.
    [12] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136.  doi: 10.1007/BF01214768.
    [13] C. D. Guevara, Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2 (2014), 177-243. 
    [14] J. Holmer and S. Roudenko, On blow-up solutions to the 3D cubic nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, (2007), Art. ID abm004, 31pp.
    [15] J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.
    [16] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.
    [17] J. KriegerE. Lenzmann and P. Raphaël, On stability of pseudo-conformal blowup for L2-critical Hartree NLS, Ann. Henri Poincaré, 10 (2009), 1159-1205.  doi: 10.1007/s00023-009-0010-2.
    [18] M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p = 0$ in $\mathbb{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.
    [19] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.
    [20] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 18 (1983), 349–374. doi: 10.2307/2007032.
    [21] P.-L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.
    [22] P.-L. Lions, Compactness and topological methods for some nonlinear variational problems of mathematical physics, In Nonlinear Problems: Present and Future, (Los Alamos, N.M., 1981), North-Holland Math. Stud., 61, North-Holland, Amsterdam-New York, (1982), 17–34.
    [23] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.
    [24] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.
    [25] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.
    [26] T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.  doi: 10.4310/DPDE.2004.v1.n1.a1.
    [27] T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.
    [28] C. L. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differential Equations, 55 (2016), Art. 134, 25pp. doi: 10.1007/s00526-016-1068-6.
  • 加载中

Article Metrics

HTML views(235) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint