-
Previous Article
Free boundaries subject to topological constraints
- DCDS Home
- This Issue
-
Next Article
Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities
1. | School of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
2. | Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA |
3. | School of Mathematics, Georgia Institute of Technology, 686 Cherry St NW, Atlanta, GA 30313, USA |
All $ (-1) $-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus north and south poles have been classified in our earlier work as a four dimensional surface with boundary. In this paper, we establish near the no-swirl solution surface existence, non-existence and uniqueness results on $ (-1) $-homogeneous axisymmetric solutions with nonzero swirl which are smooth on the unit sphere minus north and south poles.
References:
[1] |
M. A. Goldshtik, A paradoxical solution of the Navier-Stokes equations, Prikl. Mat. Mekh., 24 (1960), 610-621. Transl., J. Appl. Math. Mech., 24 (1960), 913-929.
doi: 10.1016/0021-8928(60)90070-8. |
[2] |
L. Landau,
A new exact solution of Navier-Stokes equations, C. R. (Doklady) Acad. Sci. URSS (N.S.), 43 (1944), 286-288.
|
[3] |
L. Li, Y. Y. Li and X. Yan,
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅰ. One singularity, Arch. Ration. Mech. Anal., 227 (2018), 1091-1163.
doi: 10.1007/s00205-017-1181-5. |
[4] |
L. Li, Y. Y. Li and X. Yan,
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅱ. Classification of axisymmetric no-swirl solutions, Journal of Differential Equations, 264 (2018), 6082-6108.
doi: 10.1016/j.jde.2018.01.028. |
[5] |
L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, vol. 6., New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/cln/006. |
[6] |
A. F. Pillow and R. Paull,
Conically similar viscous flows. Part 1. Basic conservation principles and characterization of axial causes in swirl-free flow, Journal of Fluid Mechanics, 155 (1985), 327-341.
doi: 10.1017/S0022112085001835. |
[7] |
A. F. Pillow and R. Paull,
Conically similar viscous flows. Part 2. One-parameter swirl-free flows, Journal of Fluid Mechanics, 155 (1985), 343-358.
doi: 10.1017/S0022112085001847. |
[8] |
A. F. Pillow and R. Paull,
Conically similar viscous flows. Part 3. Characterization of axial causes in swirling flow and the one-parameter flow generated by a uniform half-line source of kinematic swirl angular momentum, Journal of Fluid Mechanics, 155 (1985), 359-379.
doi: 10.1017/S0022112085001859. |
[9] |
J. Serrin,
The swirling vortex, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 271 (1972), 325-360.
doi: 10.1098/rsta.1972.0013. |
[10] |
N. A. Slezkin,
On an exact solution of the equations of viscous flow, Uch. zap. MGU, 2 (1934), 89-90.
|
[11] |
H. B. Squire,
The round laminar jet, Quart. J. Mech. Appl. Math., 4 (1951), 321-329.
doi: 10.1093/qjmam/4.3.321. |
[12] |
V. Šverák, On Landau's solutions of the Navier-Stokes equations, Problems in Mathematical Analysis, No. 61. J. Math. Sci., 179 (2011), 208–228. arXiv: math/0604550.
doi: 10.1007/s10958-011-0590-5. |
[13] |
G. Tian and Z. P. Xin,
One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998), 135-145.
doi: 10.12775/TMNA.1998.008. |
[14] |
C. Y. Wang,
Exact solutions of the steady state Navier-Stokes equation, Annu. Rev. Fluid Mech., 23 (1991), 159-177.
|
[15] |
V. I. Yatseyev, On a class of exact solutions of the equations of motion of a viscous fluid, 1950. |
show all references
References:
[1] |
M. A. Goldshtik, A paradoxical solution of the Navier-Stokes equations, Prikl. Mat. Mekh., 24 (1960), 610-621. Transl., J. Appl. Math. Mech., 24 (1960), 913-929.
doi: 10.1016/0021-8928(60)90070-8. |
[2] |
L. Landau,
A new exact solution of Navier-Stokes equations, C. R. (Doklady) Acad. Sci. URSS (N.S.), 43 (1944), 286-288.
|
[3] |
L. Li, Y. Y. Li and X. Yan,
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅰ. One singularity, Arch. Ration. Mech. Anal., 227 (2018), 1091-1163.
doi: 10.1007/s00205-017-1181-5. |
[4] |
L. Li, Y. Y. Li and X. Yan,
Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅱ. Classification of axisymmetric no-swirl solutions, Journal of Differential Equations, 264 (2018), 6082-6108.
doi: 10.1016/j.jde.2018.01.028. |
[5] |
L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, vol. 6., New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/cln/006. |
[6] |
A. F. Pillow and R. Paull,
Conically similar viscous flows. Part 1. Basic conservation principles and characterization of axial causes in swirl-free flow, Journal of Fluid Mechanics, 155 (1985), 327-341.
doi: 10.1017/S0022112085001835. |
[7] |
A. F. Pillow and R. Paull,
Conically similar viscous flows. Part 2. One-parameter swirl-free flows, Journal of Fluid Mechanics, 155 (1985), 343-358.
doi: 10.1017/S0022112085001847. |
[8] |
A. F. Pillow and R. Paull,
Conically similar viscous flows. Part 3. Characterization of axial causes in swirling flow and the one-parameter flow generated by a uniform half-line source of kinematic swirl angular momentum, Journal of Fluid Mechanics, 155 (1985), 359-379.
doi: 10.1017/S0022112085001859. |
[9] |
J. Serrin,
The swirling vortex, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 271 (1972), 325-360.
doi: 10.1098/rsta.1972.0013. |
[10] |
N. A. Slezkin,
On an exact solution of the equations of viscous flow, Uch. zap. MGU, 2 (1934), 89-90.
|
[11] |
H. B. Squire,
The round laminar jet, Quart. J. Mech. Appl. Math., 4 (1951), 321-329.
doi: 10.1093/qjmam/4.3.321. |
[12] |
V. Šverák, On Landau's solutions of the Navier-Stokes equations, Problems in Mathematical Analysis, No. 61. J. Math. Sci., 179 (2011), 208–228. arXiv: math/0604550.
doi: 10.1007/s10958-011-0590-5. |
[13] |
G. Tian and Z. P. Xin,
One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998), 135-145.
doi: 10.12775/TMNA.1998.008. |
[14] |
C. Y. Wang,
Exact solutions of the steady state Navier-Stokes equation, Annu. Rev. Fluid Mech., 23 (1991), 159-177.
|
[15] |
V. I. Yatseyev, On a class of exact solutions of the equations of motion of a viscous fluid, 1950. |
[1] |
Zaihong Jiang, Li Li, Wenbo Lu. Existence of axisymmetric and homogeneous solutions of Navier-Stokes equations in cone regions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4231-4258. doi: 10.3934/dcdss.2021126 |
[2] |
Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427 |
[3] |
Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237 |
[4] |
Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2301-2340. doi: 10.3934/dcds.2020366 |
[5] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[6] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations and Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217 |
[7] |
Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008 |
[8] |
Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199 |
[9] |
Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397 |
[10] |
Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079 |
[11] |
G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123 |
[12] |
P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785 |
[13] |
Chuong V. Tran, Theodore G. Shepherd, Han-Ru Cho. Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 483-494. doi: 10.3934/dcdsb.2002.2.483 |
[14] |
Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495 |
[15] |
Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17 |
[16] |
Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215 |
[17] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[18] |
Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613 |
[19] |
Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323 |
[20] |
Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]