\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities

  • * Corresponding author: Xukai Yan

    * Corresponding author: Xukai Yan

Dedicated to Luis Caffarelli on his 70th birthday, with admiration and friendship

The first named author is partially supported by NSFC grants 11871177. The second named author is partially supported by NSF grants DMS-1501004. The third named author is partially supported by AMS-Simons Travel Grant and AWM-NSF Travel Grant 1642548

Abstract Full Text(HTML) Related Papers Cited by
  • All $ (-1) $-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus north and south poles have been classified in our earlier work as a four dimensional surface with boundary. In this paper, we establish near the no-swirl solution surface existence, non-existence and uniqueness results on $ (-1) $-homogeneous axisymmetric solutions with nonzero swirl which are smooth on the unit sphere minus north and south poles.

    Mathematics Subject Classification: Primary: 35Q30, 76D03; Secondary: 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. A. Goldshtik, A paradoxical solution of the Navier-Stokes equations, Prikl. Mat. Mekh., 24 (1960), 610-621. Transl., J. Appl. Math. Mech., 24 (1960), 913-929. doi: 10.1016/0021-8928(60)90070-8.
    [2] L. Landau, A new exact solution of Navier-Stokes equations, C. R. (Doklady) Acad. Sci. URSS (N.S.), 43 (1944), 286-288. 
    [3] L. LiY. Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅰ. One singularity, Arch. Ration. Mech. Anal., 227 (2018), 1091-1163.  doi: 10.1007/s00205-017-1181-5.
    [4] L. LiY. Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅱ. Classification of axisymmetric no-swirl solutions, Journal of Differential Equations, 264 (2018), 6082-6108.  doi: 10.1016/j.jde.2018.01.028.
    [5] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, vol. 6., New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/006.
    [6] A. F. Pillow and R. Paull, Conically similar viscous flows. Part 1. Basic conservation principles and characterization of axial causes in swirl-free flow, Journal of Fluid Mechanics, 155 (1985), 327-341.  doi: 10.1017/S0022112085001835.
    [7] A. F. Pillow and R. Paull, Conically similar viscous flows. Part 2. One-parameter swirl-free flows, Journal of Fluid Mechanics, 155 (1985), 343-358.  doi: 10.1017/S0022112085001847.
    [8] A. F. Pillow and R. Paull, Conically similar viscous flows. Part 3. Characterization of axial causes in swirling flow and the one-parameter flow generated by a uniform half-line source of kinematic swirl angular momentum, Journal of Fluid Mechanics, 155 (1985), 359-379.  doi: 10.1017/S0022112085001859.
    [9] J. Serrin, The swirling vortex, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 271 (1972), 325-360.  doi: 10.1098/rsta.1972.0013.
    [10] N. A. Slezkin, On an exact solution of the equations of viscous flow, Uch. zap. MGU, 2 (1934), 89-90. 
    [11] H. B. Squire, The round laminar jet, Quart. J. Mech. Appl. Math., 4 (1951), 321-329.  doi: 10.1093/qjmam/4.3.321.
    [12] V. Šverák, On Landau's solutions of the Navier-Stokes equations, Problems in Mathematical Analysis, No. 61. J. Math. Sci., 179 (2011), 208–228. arXiv: math/0604550. doi: 10.1007/s10958-011-0590-5.
    [13] G. Tian and Z. P. Xin, One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998), 135-145.  doi: 10.12775/TMNA.1998.008.
    [14] C. Y. Wang, Exact solutions of the steady state Navier-Stokes equation, Annu. Rev. Fluid Mech., 23 (1991), 159-177. 
    [15] V. I. Yatseyev, On a class of exact solutions of the equations of motion of a viscous fluid, 1950.
  • 加载中
SHARE

Article Metrics

HTML views(257) PDF downloads(270) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return