We show that, on a $ 2 $-dimensional compact manifold, the optimal transport map in the semi-discrete random matching problem is well-approximated in the $ L^2 $-norm by identity plus the gradient of the solution to the Poisson problem $ - {\Delta} f^{n, t} = \mu^{n, t}-1 $, where $ \mu^{n, t} $ is an appropriate regularization of the empirical measure associated to the random points. This shows that the ansatz of [
As part of our strategy, we prove a new stability result for the optimal transport map on a compact manifold.
Citation: |
[1] |
M. Ajtai, J. Komóls and G. Tusnády, On optimal matchings, Combinatorica, 4 (1984), 259-264.
doi: 10.1007/BF02579135.![]() ![]() ![]() |
[2] |
L. Ambrosio and F. Glaudo, Finer estimates on the 2-dimensional matching problem, preprint, arXiv: 1810.07002.
![]() |
[3] |
L. Ambrosio, F. Stra and D. Trevisan, A PDE approach to a 2-dimensional matching problem, Probability Theory and Related Fields, 173 (2019), 433-477.
doi: 10.1007/s00440-018-0837-x.![]() ![]() ![]() |
[4] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser Boston, Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1.![]() ![]() ![]() |
[5] |
S. H. Benton, The Hamilton-Jacobi Equation: A Global Approach, Academic Press, 1977.
![]() ![]() |
[6] |
R. J. Berman, Convergence rates for discretized Monge-Ampère equations and quantitative stability of optimal transport, preprint, arXiv: 1803.00785.
![]() |
[7] |
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375-417.
doi: 10.1002/cpa.3160440402.![]() ![]() ![]() |
[8] |
S. Caracciolo, C. Lucibello, G. Parisi and G. Sicuro, Scaling hypothesis for the Euclidean bipartite matching problem, Physical Review E, 90 (2014), 012118.
![]() |
[9] |
I. Chavel, Eigenvalues in Riemannian Geometry, vol. 115 of Pure and Applied Mathematics, Academic Press, 1984.
![]() ![]() |
[10] |
V. Dobrić and J. E. Yukich, Asymptotics for transportation cost in high dimensions, Journal of Theoretical Probability, 8 (1995), 97-118.
doi: 10.1007/BF02213456.![]() ![]() ![]() |
[11] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies
in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
![]() ![]() |
[12] |
A. Fathi, Regularity of $C^1$ solutions of the Hamilton-Jacobi equation, in Annales de la Faculté des Sciences de Toulouse: Mathématiques, vol. 12, Université Paul Sabatier, Institut de Mathématiques, 2003, 479–516.
doi: 10.5802/afst.1059.![]() ![]() ![]() |
[13] |
N. Gigli, On Hölder continuity-in-time of the optimal transport map towards measures along a curve, Proceedings of the Edinburgh Mathematical Society, 54 (2011), 401-409.
doi: 10.1017/S001309150800117X.![]() ![]() ![]() |
[14] |
F. Glaudo, On the c-concavity with respect to the quadratic cost on a manifold, Nonlinear Analysis, 178 (2019), 145-151.
doi: 10.1016/j.na.2018.07.015.![]() ![]() ![]() |
[15] |
M. Goldman, M. Huesmann and F. Otto, A large-scale regularity theory for the Monge-Ampère equation with rough data and application to the optimal matching problem, preprint, arXiv: 1808.09250.
![]() |
[16] |
M. Goldman and F. Otto, A variational proof of partial regularity for optimal transportation maps, preprint, arXiv: 1704.05339.
![]() |
[17] |
N. Holden, Y. Peres and A. Zhai, Gravitational allocation on the sphere, Proceedings of the National Academy of Sciences, 115 (2018), 9666-9671.
doi: 10.1073/pnas.1720804115.![]() ![]() ![]() |
[18] |
M. Ledoux, On optimal matching of Gaussian samples, Veroyatnost i Statistika, 457 (2017), 226-264.
![]() ![]() |
[19] |
M. Ledoux, On optimal matching of Gaussian samples ii, https://perso.math.univ-toulouse.fr/ledoux/files/2019/03/SudakovII.pdf.
![]() |
[20] |
M. Ledoux, A fluctuation result in dual Sobolev norm for the optimal matching problem, https://perso.math.univ-toulouse.fr/ledoux/files/2019/02/matchingclt.pdf.
![]() |
[21] |
T. Leighton and P. Shor, Tight bounds for minimax grid matching with applications to the average case analysis of algorithms, Combinatorica, 9 (1989), 161-187.
doi: 10.1007/BF02124678.![]() ![]() ![]() |
[22] |
P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, vol. 69, London Pitman, 1982.
![]() ![]() |
[23] |
J. Lott and C. Villani, Hamilton–Jacobi semigroup on length spaces and applications, Journal de Mathématiques Pures et Appliquées, 88 (2007), 219–229.
doi: 10.1016/j.matpur.2007.06.003.![]() ![]() ![]() |
[24] |
R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geometric and Functional Analysis, 11 (2001), 589-608.
doi: 10.1007/PL00001679.![]() ![]() ![]() |
[25] |
W. Rudin, Principles of Mathematical Analysis, 3rd edition, McGraw-hill New York, 1976.
![]() ![]() |
[26] |
F. Santambrogio, Optimal Transport for Applied Mathematicians, Calculus of variations, PDEs, and modeling. Progress in Nonlinear Differential Equations and their Applications, 87. Birkhäuser/Springer, Cham, 2015.
doi: 10.1007/978-3-319-20828-2.![]() ![]() ![]() |
[27] |
P. W. Shor and J. E. Yukich, Minimax grid matching and empirical measures, The Annals of Probability, 19 (1991), 1338-1348.
doi: 10.1214/aop/1176990347.![]() ![]() ![]() |
[28] |
M. Talagrand, Matching random samples in many dimensions, The Annals of Applied Probability, 2 (1992), 846-856.
doi: 10.1214/aoap/1177005578.![]() ![]() ![]() |
[29] |
M. Talagrand, Upper and Lower Bounds of Stochastic Processes, vol. 60 of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 2014.
doi: 10.1007/978-3-642-54075-2.![]() ![]() ![]() |
[30] |
M. Talagrand, Scaling and non-standard matching theorems, Comptes Rendus Mathematique, 356 (2018), 692-695.
doi: 10.1016/j.crma.2018.04.018.![]() ![]() ![]() |
[31] |
G. Teschl, Ordinary Differential Equations and Dynamical Systems, vol. 140, American Mathematical Soc., 2012.
doi: 10.1090/gsm/140.![]() ![]() ![]() |
[32] |
N. G. Trillos and D. Slepčev, On the rate of convergence of empirical measures in $\infty$-transportation distance, Canadian Journal of Mathematics, 67 (2015), 1358-1383.
doi: 10.4153/CJM-2014-044-6.![]() ![]() ![]() |
[33] |
C. Villani, Optimal Transport, Old and New, Springer Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9.![]() ![]() ![]() |
The points considered in the proof of of Lemma 4.1