    January  2020, 40(1): 133-151. doi: 10.3934/dcds.2020006

## Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space

 Department of Mathematics, West University of Timişoara, 4, Blvd. V. Pârvan 300223, Timişoara, Romania

* Corresponding author: Petru Jebelean

Received  November 2018 Published  October 2019

We deal with a multiparameter Dirichlet system having the form
 $\begin{equation*} \left\{ \begin{array}{ll} -\mathcal M(u) = \lambda_1f_1(u,v), & \hbox{in$\Omega$},\\ -\mathcal M(v) = \lambda_2f_2(u,v), & \hbox{in$\Omega$},\\ u|_{\partial\Omega} = 0 = v|_{\partial\Omega}, \end{array} \right. \end{equation*}$
where
 $\mathcal M$
stands for the mean curvature operator in Minkowski space
 $\mathcal M(u) = \mbox{div} \left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right),$
 $\Omega$
is a general bounded regular domain in
 $\mathbb{R}^N$
and the continuous functions
 $f_1,f_2$
satisfy some sign and quasi-monotonicity conditions. Among others, these type of nonlinearities, include the Lane-Emden ones. For such a system we show the existence of a hyperbola like curve which separates the first quadrant in two disjoint sets, an open one
 $\mathcal{O}_0$
and a closed one
 $\mathcal{F}$
, such that the system has zero or at least one strictly positive solution, according to
 $(\lambda_1, \lambda_2)\in \mathcal{O}_0$
or
 $(\lambda_1, \lambda_2)\in \mathcal{F}$
. Moreover, we show that inside of
 $\mathcal{F}$
there exists an infinite rectangle in which the parameters being, the system has at least two strictly positive solutions. Our approach relies on a lower and upper solutions method - which we develop here, together with topological degree type arguments. In a sense, our results extend to non-radial systems some recent existence/non-existence and multiplicity results obtained in the radial case.
Citation: Daniela Gurban, Petru Jebelean, Cǎlin Şerban. Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 133-151. doi: 10.3934/dcds.2020006
##### References:
  L. J. Alías and B. Palmer, On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem, Bull. London Math. Soc., 33 (2001), 454-458.  doi: 10.1017/S0024609301008220.  Google Scholar  L. J. Alías, A. Romero and M. Sánchez, Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems, Tôhoku Math. J., 49 (1997), 337-345.  doi: 10.2748/tmj/1178225107.  Google Scholar  R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87 (1982/83), 131-152.  doi: 10.1007/BF01211061.  Google Scholar  C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for systems involving mean curvature operators in Euclidean and Minkowski spaces, in Mathematical Models in Engineering, Biology and Medicine, AIP Conf. Proc., A. Cabada, E. Liz and J. J. Nieto (eds.), Amer. Inst. Phys., Melville, 1124 (2009), 50–59. Google Scholar  C. Bereanu, P. Jebelean and J. Mawhin, The Dirichlet problem with mean curvature operator in Minkowski space – a variational approach, Adv. Nonlinear Stud., 14 (2014), 315-326.  doi: 10.1515/ans-2014-0204.  Google Scholar  C. Bereanu, P. Jebelean and J. Mawhin, Corrigendum to: "The Dirichlet problem with mean curvature operator in Minkowski space - a variational approach" [Adv. Nonlinear Stud., 14 (2014), 315–326], Adv. Nonlinear Stud., 16 (2016), 173-174.  doi: 10.1515/ans-2015-5030.  Adv.+Nonlinear+Stud.,+14+(2014),+315–326]+C. Bereanu+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar  C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 265 (2013), 644-659.  doi: 10.1016/j.jfa.2013.04.006.  Google Scholar  E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Math., 15 (1970), 223-230. Google Scholar  S.-Y. Cheng and S.-T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104 (1976), 407-419.  doi: 10.2307/1970963.  Google Scholar  Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press, 2009. Google Scholar  Y. Choquet-Bruhat, A. E. Fischer and J. E. Marsden, Maximal Hypersurfaces and Positivity of Mass, Proc. of the Enrico Fermi Summer School of the Italian Physical Society, J. Ehlers (Ed.), North-Holland, 1979. Google Scholar  I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621-638.  doi: 10.1515/ans-2012-0310.  Google Scholar  C. Corsato, F. Obersnel and P. Omari, The Dirichlet problem for gradient dependent prescribed mean curvature equations in the Lorenz-Minkowski space, Georgian Math. J., 24 (2017), 113-134.  doi: 10.1515/gmj-2016-0078.  Google Scholar  C. Corsato, F. Obersnel, P. Omari and S. Rivetti, On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space, Discrete Contin. Dyn. Syst., 2013 (2013), 159-169.  doi: 10.3934/proc.2013.2013.159.  Google Scholar  C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 405 (2013), 227-239.  doi: 10.1016/j.jmaa.2013.04.003.  Google Scholar  D. Gurban and P. Jebelean, Positive radial solutions for systems with mean curvature operator in Minkowski space, Rend. Instit. Mat. Univ. Trieste, 49 (2017), 245-264.  doi: 10.13137/2464-8728/16215.  Google Scholar  D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differential Equations, 266 (2019), 5377-5396.  doi: 10.1016/j.jde.2018.10.030.  Google Scholar  D. Gurban, P. Jebelean and C. Şerban, Nontrivial solutions for potential systems involving the mean curvature operator in Minkowski space, Adv. Nonlinear Stud., 17 (2017), 769-780.  doi: 10.1515/ans-2016-6025.  Google Scholar  Y.-H. Lee, Existence of multiple positive radial solutions for a semilinear elliptic system on an unbounded domain, Nonlinear Anal., 47 (2001), 3649-3660.  doi: 10.1016/S0362-546X(01)00485-0.  Google Scholar  R. Ma, T. Chen and H. Gao, On positive solutions of the Dirichlet problem involving the extrinsic mean curvature operator, Electron. J. Qual. Theory Differ. Equ., 98 (2016), 1-10.  doi: 10.14232/ejqtde.2016.1.98.  Google Scholar  J. E. Marsden and F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep., 66 (1980), 109-139.  doi: 10.1016/0370-1573(80)90154-4.  Google Scholar  R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65 (1979), 45-76.  doi: 10.1007/BF01940959.  Google Scholar  A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 66 (1982), 39-56.  doi: 10.1007/BF01404755.  Google Scholar

show all references

##### References:
  L. J. Alías and B. Palmer, On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem, Bull. London Math. Soc., 33 (2001), 454-458.  doi: 10.1017/S0024609301008220.  Google Scholar  L. J. Alías, A. Romero and M. Sánchez, Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems, Tôhoku Math. J., 49 (1997), 337-345.  doi: 10.2748/tmj/1178225107.  Google Scholar  R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87 (1982/83), 131-152.  doi: 10.1007/BF01211061.  Google Scholar  C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for systems involving mean curvature operators in Euclidean and Minkowski spaces, in Mathematical Models in Engineering, Biology and Medicine, AIP Conf. Proc., A. Cabada, E. Liz and J. J. Nieto (eds.), Amer. Inst. Phys., Melville, 1124 (2009), 50–59. Google Scholar  C. Bereanu, P. Jebelean and J. Mawhin, The Dirichlet problem with mean curvature operator in Minkowski space – a variational approach, Adv. Nonlinear Stud., 14 (2014), 315-326.  doi: 10.1515/ans-2014-0204.  Google Scholar  C. Bereanu, P. Jebelean and J. Mawhin, Corrigendum to: "The Dirichlet problem with mean curvature operator in Minkowski space - a variational approach" [Adv. Nonlinear Stud., 14 (2014), 315–326], Adv. Nonlinear Stud., 16 (2016), 173-174.  doi: 10.1515/ans-2015-5030.  Adv.+Nonlinear+Stud.,+14+(2014),+315–326]+C. Bereanu+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar  C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 265 (2013), 644-659.  doi: 10.1016/j.jfa.2013.04.006.  Google Scholar  E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Math., 15 (1970), 223-230. Google Scholar  S.-Y. Cheng and S.-T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104 (1976), 407-419.  doi: 10.2307/1970963.  Google Scholar  Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press, 2009. Google Scholar  Y. Choquet-Bruhat, A. E. Fischer and J. E. Marsden, Maximal Hypersurfaces and Positivity of Mass, Proc. of the Enrico Fermi Summer School of the Italian Physical Society, J. Ehlers (Ed.), North-Holland, 1979. Google Scholar  I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621-638.  doi: 10.1515/ans-2012-0310.  Google Scholar  C. Corsato, F. Obersnel and P. Omari, The Dirichlet problem for gradient dependent prescribed mean curvature equations in the Lorenz-Minkowski space, Georgian Math. J., 24 (2017), 113-134.  doi: 10.1515/gmj-2016-0078.  Google Scholar  C. Corsato, F. Obersnel, P. Omari and S. Rivetti, On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space, Discrete Contin. Dyn. Syst., 2013 (2013), 159-169.  doi: 10.3934/proc.2013.2013.159.  Google Scholar  C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 405 (2013), 227-239.  doi: 10.1016/j.jmaa.2013.04.003.  Google Scholar  D. Gurban and P. Jebelean, Positive radial solutions for systems with mean curvature operator in Minkowski space, Rend. Instit. Mat. Univ. Trieste, 49 (2017), 245-264.  doi: 10.13137/2464-8728/16215.  Google Scholar  D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differential Equations, 266 (2019), 5377-5396.  doi: 10.1016/j.jde.2018.10.030.  Google Scholar  D. Gurban, P. Jebelean and C. Şerban, Nontrivial solutions for potential systems involving the mean curvature operator in Minkowski space, Adv. Nonlinear Stud., 17 (2017), 769-780.  doi: 10.1515/ans-2016-6025.  Google Scholar  Y.-H. Lee, Existence of multiple positive radial solutions for a semilinear elliptic system on an unbounded domain, Nonlinear Anal., 47 (2001), 3649-3660.  doi: 10.1016/S0362-546X(01)00485-0.  Google Scholar  R. Ma, T. Chen and H. Gao, On positive solutions of the Dirichlet problem involving the extrinsic mean curvature operator, Electron. J. Qual. Theory Differ. Equ., 98 (2016), 1-10.  doi: 10.14232/ejqtde.2016.1.98.  Google Scholar  J. E. Marsden and F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep., 66 (1980), 109-139.  doi: 10.1016/0370-1573(80)90154-4.  Google Scholar  R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65 (1979), 45-76.  doi: 10.1007/BF01940959.  Google Scholar  A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 66 (1982), 39-56.  doi: 10.1007/BF01404755.  Google Scholar
  Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271  Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159  Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris. Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1921-1933. doi: 10.3934/dcdss.2020150  Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012  Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765  Shao-Yuan Huang. Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3443-3462. doi: 10.3934/dcds.2019142  Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061  Chunyan Ji, Yang Xue, Yong Li. Periodic solutions for SDEs through upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4737-4754. doi: 10.3934/dcdsb.2020122  João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217  Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575  Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014  Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102  Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147  Rubén Figueroa, Rodrigo López Pouso, Jorge Rodríguez–López. Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 617-633. doi: 10.3934/dcdsb.2019257  Alberto Cabada, João Fialho, Feliz Minhós. Non ordered lower and upper solutions to fourth order problems with functional boundary conditions. Conference Publications, 2011, 2011 (Special) : 209-218. doi: 10.3934/proc.2011.2011.209  Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963  Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89  Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971  Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014  Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

2020 Impact Factor: 1.392