\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes

  • * Corresponding author: Carlos Lizama

    * Corresponding author: Carlos Lizama 

The first author is supported by FONDECYT grant 1180041

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we investigate conditions for maximal regularity of Volterra equations defined on the Lebesgue space of sequences $ \ell_p(\mathbb{Z}) $ by using Blünck's theorem on the equivalence between operator-valued $ \ell_p $-multipliers and the notion of $ R $-boundedness. We show sufficient conditions for maximal $ \ell_p-\ell_q $ regularity of solutions of such problems solely in terms of the data. We also explain the significance of kernel sequences in the theory of viscoelasticity, establishing a new and surprising connection with schemes of approximation of fractional models.

    Mathematics Subject Classification: Primary: 49M25, 49N60; Secondary: 42A45, 47A58.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, Cesáro sums and algebra homomorphisms of bounded operators, Israel J. Math., 216 (2016), 471-505.  doi: 10.1007/s11856-016-1417-3.
    [2] L. AbadiasC. LizamaP. J. Miana and M. P. Velasco, On well-posedness of vector-valued fractional differential-difference equations, Discr. Cont. Dyn. Systems, Series A, 39 (2019), 2679-2708.  doi: 10.3934/dcds.2019112.
    [3] R. P. Agarwal, C. Cuevas and C. Lizama, Regularity of Difference Equations on Banach Spaces, Springer-Verlag, Cham, 2014. doi: 10.1007/978-3-319-06447-5.
    [4] G. AkrivisB. Li and C. Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations, Math. Comp., 86 (2017), 1527-1552.  doi: 10.1090/mcom/3228.
    [5] H. Amann, Linear and Quasilinear Parabolic Problems, Monographs in Mathematics, 89, Birkhäuser-Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.
    [6] A. AshyralyevS. Piskarev and L. Weis, On well-posedness of difference schemes for abstract parabolic equations in $L_p([0, T ]; E)$spaces, Numer. Funct. Anal. Optim., 23 (2002), 669-693.  doi: 10.1081/NFA-120016264.
    [7] S. Blünck, Maximal regularity of discrete and continuous time evolution equations, Studia Math., 146 (2001), 157-176.  doi: 10.4064/sm146-2-3.
    [8] R. E. Corman, L. Rao, N. Ashwin-Bharadwaj, J. T. Allison and R. H. Ewoldt, Setting material function design targets for linear viscoelastic materials and structures, J. Mech. Des., 138 (2016), 051402, 12pp. doi: 10.1115/1.4032698.
    [9] R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), ⅷ+114 pp. doi: 10.1090/memo/0788.
    [10] S. Elaydi, Stability and asymptoticity of Volterra difference equations: A progress report, J. Comp. Appl. Math., 228 (2009), 504-513.  doi: 10.1016/j.cam.2008.03.023.
    [11] B. JinB. Li and Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer. Math., 138 (2018), 101-131.  doi: 10.1007/s00211-017-0904-8.
    [12] T. Kemmochi, Discrete maximal regularity for abstract Cauchy problems, Studia Math., 234 (2016), 241-263. 
    [13] T. Kemmochi and N. Saito, Discrete maximal regularity and the finite element method for parabolic equations, Numer. Math., 138 (2018), 905-937.  doi: 10.1007/s00211-017-0929-z.
    [14] V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differential Equations, 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.
    [15] B. KovácsB. Li and C. Lubich, A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer. Anal., 54 (2016), 3600-3624.  doi: 10.1137/15M1040918.
    [16] D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods, Numer. Math., 135 (2017), 923-952.  doi: 10.1007/s00211-016-0821-2.
    [17] B. Li and W. Sun, Maximal regularity of fully discrete finite element solutions of parabolic equations, SIAM J. Numer. Anal., 55 (2017), 521-542.  doi: 10.1137/16M1071912.
    [18] B. Li and W. Sun, Maximal $L_p$ analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra, Math. Comp., 86 (2017), 1071-1102.  doi: 10.1090/mcom/3133.
    [19] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809-3827.  doi: 10.1090/proc/12895.
    [20] C. Lizama., $\ell_p$-maximal regularity for fractional difference equations on $UMD$ spaces., Math. Nach., 288 (2015), 2079-2092.  doi: 10.1002/mana.201400326.
    [21] C. Lizama and M. Murillo-Arcila, Maximal regularity in $\ell_p$ spaces for discrete time fractional shifted equations, J. Differential Equations, 263 (2017), 3175-3196.  doi: 10.1016/j.jde.2017.04.035.
    [22] C. Lubich, Convolution quadrature and discretized operational calculus I, Numer. Math., 52 (1988), 129-145.  doi: 10.1007/BF01398686.
    [23] J. Prüss, Evolutionary Integral Equations and Applications, Springer, Basel Heidelberg, 1993. doi: 10.1007/978-3-0348-8570-6.
  • 加载中
SHARE

Article Metrics

HTML views(298) PDF downloads(257) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return