\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Compacton equations and integrability: The Rosenau-Hyman and Cooper-Shepard-Sodano equations

  • * Corresponding author: R. Hernández Heredero

    * Corresponding author: R. Hernández Heredero 
Abstract Full Text(HTML) Related Papers Cited by
  • We study integrability –in the sense of admitting recursion operators– of two nonlinear equations which are known to possess compacton solutions: the $ K(m, n) $ equation introduced by Rosenau and Hyman

    $ D_t(u) + D_x(u^m) + D_x^3(u^n) = 0 \; , $

    and the CSS equation introduced by Coooper, Shepard, and Sodano,

    $ D_t(u) + u^{l-2}D_x(u) + \alpha p D_x (u^{p-1} u_x^2) + 2\alpha D_x^2(u^p u_x) = 0 \; . $

    We obtain a full classification of integrable $ K(m, n) $ and CSS equations; we present their recursion operators, and we prove that all of them are related (via nonlocal transformations) to the Korteweg-de Vries equation. As an application, we construct isochronous hierarchies of equations associated to the integrable cases of CSS.

    Mathematics Subject Classification: Primary: 37K05, 37K10; Secondary: 35B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Adler, On the trace functional for formal pseudodifferential operators and the symplectic structure of the KdV type equations, Inventiones Math., 50 (1979), 219-248.  doi: 10.1007/BF01410079.
    [2] D. M. Ambrose and J. D. Wright, Preservation of support and positivity for solutions of degenerate evolution equations, Nonlinearity, 23 (2010), 607-620.  doi: 10.1088/0951-7715/23/3/010.
    [3] D. M. Ambrose and J. D. Wright, Dispersion versus anti-diffusion:well-posedness in variable coefficient and quasilinear equations of KdV type, Indiana Univ. Math. J., 62 (2013), 1237-1281.  doi: 10.1512/iumj.2013.62.5049.
    [4] D. M. AmbroseG. SimpsonJ. D. Wright and D. G. Yang, Ill-posedness of degenerate dispersive equations, Nonlinearity, 25 (2012), 2655-2680.  doi: 10.1088/0951-7715/25/9/2655.
    [5] I. M. Bakirov, On the Symmetries of some System of Evolution Equations, Technical Report, Institute of Mathematics, Russian Academy of Sciences, Ufa, 1991.
    [6] F. BeukersJ. A. Sanders and J. P. Wang, One symmetry does not imply integrability, J. Diff. Eq., 146 (1998), 251-260.  doi: 10.1006/jdeq.1998.3426.
    [7] A. H. Bilge, A system with a recursion operator but one higher local symmetry, Lie Groups Appl., 1 (1994), 132–139. (Also available as arXiv: 1904.01291).
    [8] F. Calogero, Why Are Certain Nonlinear PDEs Both Widely Applicable and Integrable?, In: What Is Integrability?, 1–62. Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991.
    [9] F. CalogeroIsochronous Systems, Oxford University Press, Oxford, UK, 2008. 
    [10] F. Calogero and A. Degasperis, Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform, J. Math. Phys., 22 (1981), 22-31.  doi: 10.1063/1.524750.
    [11] F. Calogero and M. Mariani, A modified Schwarzian Korteweg-de Vries equation in 2+1 dimensions with lots of isochronous solutions, Yadernaya Fiz., 68 (2005), 1710-1717.  doi: 10.1134/1.2121911.
    [12] F. CalogeroM. Euler and N. Euler, New evolution PDEs with many isochronous solutions, J. Math. Anbal. Appl., 353 (2009), 481-488.  doi: 10.1016/j.jmaa.2008.12.038.
    [13] F. CooperM. Shepard and P. Sodano, Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E, 48 (1993), 4027-4032.  doi: 10.1103/PhysRevE.48.4027.
    [14] D. K. Demskoy and V. V. Sokolov, On recursion operators for elliptic models, Nonlinearity, 21 (2008), 1253-1264.  doi: 10.1088/0951-7715/21/6/006.
    [15] B. Dey and A. Khare, Stability of compacton solutions, Physical Review E, 58 (1998), R2741–R2744. doi: 10.1103/PhysRevE.58.R2741.
    [16] A. S. Fokas, A symmetry approach to exactly solvable evolution equations, J. Math. Physics, 21 (1980), 1318-1325.  doi: 10.1063/1.524581.
    [17] R. Hernández Heredero, Integrable quasilinear equations, Teoret. Mat. Fiz., 133 (2002), 233-246. 
    [18] R. Hernández Heredero, Classification of fully nonlinear integrable evolution equations of third order, J. Nonlinear Math. Phys., 12 (2005), 567-585.  doi: 10.2991/jnmp.2005.12.4.10.
    [19] R. Hernández Heredero and E.G. Reyes, Nonlocal symmetries, compacton equations and integrability, Int. J. Geometric Methods in Modern Physics, 10 (2013), 1350046 (24 pages). doi: 10.1142/S0219887813500461.
    [20] R. Hernández Heredero, V. V. Sokolov and S. I. Svinolupov, Why are there so many integrable equations of third order?, in Proceedings of NEEDS'94, Los Alamos, ed. E.V. Zhakarov, A.E. Bishop, D.D. Holm (World Scientific, 1994), 1995, 42–53.
    [21] A. Khare and F. Cooper, One-parameter family of soliton solutions with compact support in a class of generalized Korteweg-de Vries equations., Physical Review E, 48 (1993), 4843-4844.  doi: 10.1103/PhysRevE.48.4843.
    [22] A. Ludu and J. P. Draayer, Patterns on liquid surfaces: Cnoidal waves, compactons and scaling, Physica D, 123 (1998), 82-91.  doi: 10.1016/S0167-2789(98)00113-4.
    [23] Y. A. Li, P. J. Olver and P. Rosenau, Non-analytic solutions of nonlinear wave models., In Nonlinear Theory of Generalized Functions (Vienna, 1997), 129–145, Chapman & Hall/CRC Res. Notes Math., 401, Chapman & Hall/CRC, Boca Raton, FL, 1999.
    [24] M. Mariani and F. Calogero, Isochronous PDEs, Yadernaya Fiz., 68 (2005), 935-944.  doi: 10.1134/1.1935022.
    [25] A. V. Mikhailov, A. B. Shabat and V. V. Sokolov, The symmetry approach to classification of integrable equations, in What is Integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991,115–184.
    [26] A. V. Mikhailov and V. V. Sokolov, Symmetries of differential equations and the problem of integrability, Lect. Notes Phys., 767 (2009), 19-88.  doi: 10.1007/978-3-540-88111-7_2.
    [27] P. J. Olver, Applications of Lie Groups to Differential Equations, Second Edition, Springer-Verlag, New York, 1993.
    [28] N. PeterssonN. Euler and M. Euler, Recursion operators for a class of integrable third order equations, Studies in Applied Mathematics, 112 (2004), 201-225.  doi: 10.1111/j.0022-2526.2004.01511.x.
    [29] P. Rosenau and A. Zilburg, Compactons, J. Phys. A: Math. Theor., 51 (2018), 343001 (136pp). doi: 10.1088/1751-8121/aabff5.
    [30] P. Rosenau, What is $\dots$ a Compacton?, Notices of the AMS, 52 (2005), 738-739. 
    [31] P. Rosenau and J. M. Hyman, Compactons: Solitons with finite wavelength, Phys. Rev. Lett., 70 (1993), 564-567. 
    [32] J. A. Sanders and J.-P. Wang, On the integrability of homogeneous scalar evolution equations, J. Differential Equations, 147 (1998), 410-434.  doi: 10.1006/jdeq.1998.3452.
    [33] J. A. Sanders and J.-P. Wang, On the integrability of non-polynomial scalar evolution equations, J. Differential Equations, 166 (2000), 132-150.  doi: 10.1006/jdeq.2000.3782.
    [34] V. V. Sokolov and V. V. Shabat, Classification of integrable evolution equations, Sov. Sci. Rev. C, 4 (1984), 221-280. 
    [35] S. I. Svinolupov and V. V. Sokolov, Weak nonlocalities in evolution equations, Mathematical Notes, 48 (1990), 1234-1239.  doi: 10.1007/BF01240266.
    [36] J. Vodová, A complete list of conservation laws for non-integrable compacton equations of $K(m, m)$ type, Nonlinearity, 26 (2013), 757-762.  doi: 10.1088/0951-7715/26/3/757.
    [37] A. Zilburg and P. Rosenau, Loss of regularity in the $K(m, n)$ equations, Nonlinearity, 31 (2018), 2651-2665.  doi: 10.1088/1361-6544/aab58b.
  • 加载中
SHARE

Article Metrics

HTML views(469) PDF downloads(329) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return