January  2020, 40(1): 549-577. doi: 10.3934/dcds.2020022

Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities

1. 

Università della Calabria, Dipartimento di Matematica e Informatica, Via P. Bucci 31B - Rende (CS), 87036, Italy

2. 

Université de Picardie Jules Verne, LAMFA, CNRS UMR 7352, Rue Saint-Leu 33 - Amiens, 80039, France

Received  April 2019 Revised  July 2019 Published  October 2019

We investigate qualitative properties of positive singular solutions of some elliptic systems in bounded and unbounded domains. We deduce symmetry and monotonicity properties via the moving plane procedure. Moreover, in the unbounded case, we study some cooperative elliptic systems involving critical nonlinearities in $ {\mathbb{R}}^n $.

Citation: Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022
References:
[1]

A. D. Alexandrov, A characteristic property of the spheres, Ann. Mat. Pura Appl., 58 (1962), 303-354.  doi: 10.1007/BF02413056.

[2]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.

[3]

T. BartschN. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.

[4]

T. BartschZ. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bulletin Soc. Brasil. de Mat Nova Ser, 22 (1991), 1-37.  doi: 10.1007/BF01244896.

[6]

S. BiagiE. Valdinoci and E. Vecchi, A symmetry result for elliptic systems in punctured domains, Commun. Pure Appl. Anal., 18 (2019), 2819-2833.  doi: 10.3934/cpaa.2019126.

[7]

S. Biagi, E. Valdinoci and E. Vecchi, A symmetry result for cooperative elliptic systems with singularities, arXiv: 1904.02003.

[8]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363-380.  doi: 10.1007/s00526-009-0266-x.

[9]

H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. 

[10]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701.

[11]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. on Pure and Appl. Mat., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.

[12]

A. CaninoF. Esposito and B. Sciunzi, On the Höpf boundary lemma for singular semilinear elliptic equations, J. of Differential Equations, 266 (2019), 5488-5499.  doi: 10.1016/j.jde.2018.10.039.

[13]

M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differential Equations, 57 (2018), Art. 23, 20 pp. doi: 10.1007/s00526-017-1283-9.

[14]

M. G. CrandallP. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. P.D.E., 2 (1977), 193-222.  doi: 10.1080/03605307708820029.

[15]

E. N. Dancer, Moving plane methods for systems on half spaces, Math. Ann., 342 (2008), 245-254.  doi: 10.1007/s00208-008-0226-3.

[16]

D. G. De Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 119-123.  doi: 10.1007/BF01193947.

[17]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal., 33 (1998), 211-234.  doi: 10.1016/S0362-546X(97)00548-8.

[18]

E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital., 1 (1968), 135-137. 

[19]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. of Differential Equations, 265 (2018), 1962-1983.  doi: 10.1016/j.jde.2018.04.030.

[20]

F. EspositoL. Montoro and B. Sciunzi, Monotonicity and symmetry of singular solutions to quasilinear problems, J. Math. Pure Appl., 126 (2019), 214-231.  doi: 10.1016/j.matpur.2018.09.005.

[21]

F. Esposito and B. Sciunzi, On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications, arXiv: 1810.13294.

[22]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, 1992.

[23]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.

[24]

F. Gladiali, M. Grossi and C. Troesler, A non-variational system involving the critical Sobolev exponent. The radial case, J. Anal. Math., 138 (2019), 643–671, arXiv: 1603.05641. doi: 10.1007/s11854-019-0040-8.

[25]

F. Gladiali, M. Grossi and C. Troesler, Entire radial and nonradial solutions for systems with critical growth, Calc. Var. Partial Differential Equations, 57 (2018), Art. 53, 26 pp. doi: 10.1007/s00526-018-1340-z.

[26]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $ {\mathbb{R}}^n$, Comm. Partial Differential Equations, 33 (2008), 263-284.  doi: 10.1080/03605300701257476.

[27]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. AMS, 111 (1991), 721-730.  doi: 10.1090/S0002-9939-1991-1037213-9.

[28]

G. Leoni and M. Morini, Necessary and sufficient conditions for the chain rule in $W^{1, 1}_{loc}({\mathbb{R}}^n; {\mathbb{R}}^d)$ and $BV_{loc}({\mathbb{R}}^n; {\mathbb{R}}^d)$, J. Eur. Math. Soc., 9 (2007), 219-252.  doi: 10.4171/JEMS/78.

[29]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $ {\mathbb{R}}^n$, $n \leq 3$, Commun. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.

[30]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439.  doi: 10.1016/j.anihpc.2004.03.004.

[31]

E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.  doi: 10.1080/03605309308820923.

[32]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $ {\mathbb{R}}^n$, Differential Integral Equations, 9 (1996), 465-479. 

[33]

L. Montoro, F. Punzo and B. Sciunzi, Qualitative properties of singular solutions to nonlocal problems, Ann. Mat. Pura Appl. (4), 197 (2018), 941–964. doi: 10.1007/s10231-017-0710-z.

[34]

L. MontoroG. Riey and B. Sciunzi, Qualitative properties of positive solutions to systems of quasilinear elliptic equations, Adv. Differential Equations, 20 (2015), 717-740. 

[35]

L. MontoroB. Sciunzi and M. Squassina, Symmetry results for nonvariational quasi-linear elliptic systems, Adv. Nonlinear Stud., 10 (2010), 939-955.  doi: 10.1515/ans-2010-0411.

[36]

S. Peng, Y. F. Peng and Z. O. Wang, On elliptic systems with Sobolev critical growth, Calc. Var. Partial Differential Equations, 55 (2016), Art. 142, 30 pp. doi: 10.1007/s00526-016-1091-7.

[37]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.

[38]

B. Sciunzi, On the moving Plane Method for singular solutions to semilinear elliptic equations, J. Math. Pures Appl., 108 (2017), 111-123.  doi: 10.1016/j.matpur.2016.10.012.

[39]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.

[40]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $ {\mathbb{R}}^n$, Commun. Math. Phys., 271 (2007), 199-221.  doi: 10.1007/s00220-006-0179-x.

[41]

N. Soave, On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var. Partial Differ. Equ., 53 (2015), 689-718.  doi: 10.1007/s00526-014-0764-3.

[42]

N. Soave and H. Tavares, New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, J. Differential Equations, 261 (2016), 505-537.  doi: 10.1016/j.jde.2016.03.015.

[43]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Fourth Edition, Springer-Verlag, Berlin, 2008.

[44]

C. A. Stuart, Existence and approximation of solutions of nonlinear elliptic equations, Math. Z., 147 (1976), 53-63.  doi: 10.1007/BF01214274.

[45]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. 

[46]

W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. of Differential Equations, 42 (1981), 400-413.  doi: 10.1016/0022-0396(81)90113-3.

show all references

References:
[1]

A. D. Alexandrov, A characteristic property of the spheres, Ann. Mat. Pura Appl., 58 (1962), 303-354.  doi: 10.1007/BF02413056.

[2]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.

[3]

T. BartschN. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.

[4]

T. BartschZ. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bulletin Soc. Brasil. de Mat Nova Ser, 22 (1991), 1-37.  doi: 10.1007/BF01244896.

[6]

S. BiagiE. Valdinoci and E. Vecchi, A symmetry result for elliptic systems in punctured domains, Commun. Pure Appl. Anal., 18 (2019), 2819-2833.  doi: 10.3934/cpaa.2019126.

[7]

S. Biagi, E. Valdinoci and E. Vecchi, A symmetry result for cooperative elliptic systems with singularities, arXiv: 1904.02003.

[8]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363-380.  doi: 10.1007/s00526-009-0266-x.

[9]

H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. 

[10]

J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163 (2000), 41-56.  doi: 10.1006/jdeq.1999.3701.

[11]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. on Pure and Appl. Mat., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.

[12]

A. CaninoF. Esposito and B. Sciunzi, On the Höpf boundary lemma for singular semilinear elliptic equations, J. of Differential Equations, 266 (2019), 5488-5499.  doi: 10.1016/j.jde.2018.10.039.

[13]

M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differential Equations, 57 (2018), Art. 23, 20 pp. doi: 10.1007/s00526-017-1283-9.

[14]

M. G. CrandallP. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. P.D.E., 2 (1977), 193-222.  doi: 10.1080/03605307708820029.

[15]

E. N. Dancer, Moving plane methods for systems on half spaces, Math. Ann., 342 (2008), 245-254.  doi: 10.1007/s00208-008-0226-3.

[16]

D. G. De Figueiredo, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 119-123.  doi: 10.1007/BF01193947.

[17]

D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal., 33 (1998), 211-234.  doi: 10.1016/S0362-546X(97)00548-8.

[18]

E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital., 1 (1968), 135-137. 

[19]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. of Differential Equations, 265 (2018), 1962-1983.  doi: 10.1016/j.jde.2018.04.030.

[20]

F. EspositoL. Montoro and B. Sciunzi, Monotonicity and symmetry of singular solutions to quasilinear problems, J. Math. Pure Appl., 126 (2019), 214-231.  doi: 10.1016/j.matpur.2018.09.005.

[21]

F. Esposito and B. Sciunzi, On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications, arXiv: 1810.13294.

[22]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, 1992.

[23]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.

[24]

F. Gladiali, M. Grossi and C. Troesler, A non-variational system involving the critical Sobolev exponent. The radial case, J. Anal. Math., 138 (2019), 643–671, arXiv: 1603.05641. doi: 10.1007/s11854-019-0040-8.

[25]

F. Gladiali, M. Grossi and C. Troesler, Entire radial and nonradial solutions for systems with critical growth, Calc. Var. Partial Differential Equations, 57 (2018), Art. 53, 26 pp. doi: 10.1007/s00526-018-1340-z.

[26]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $ {\mathbb{R}}^n$, Comm. Partial Differential Equations, 33 (2008), 263-284.  doi: 10.1080/03605300701257476.

[27]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. AMS, 111 (1991), 721-730.  doi: 10.1090/S0002-9939-1991-1037213-9.

[28]

G. Leoni and M. Morini, Necessary and sufficient conditions for the chain rule in $W^{1, 1}_{loc}({\mathbb{R}}^n; {\mathbb{R}}^d)$ and $BV_{loc}({\mathbb{R}}^n; {\mathbb{R}}^d)$, J. Eur. Math. Soc., 9 (2007), 219-252.  doi: 10.4171/JEMS/78.

[29]

T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $ {\mathbb{R}}^n$, $n \leq 3$, Commun. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.

[30]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439.  doi: 10.1016/j.anihpc.2004.03.004.

[31]

E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.  doi: 10.1080/03605309308820923.

[32]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $ {\mathbb{R}}^n$, Differential Integral Equations, 9 (1996), 465-479. 

[33]

L. Montoro, F. Punzo and B. Sciunzi, Qualitative properties of singular solutions to nonlocal problems, Ann. Mat. Pura Appl. (4), 197 (2018), 941–964. doi: 10.1007/s10231-017-0710-z.

[34]

L. MontoroG. Riey and B. Sciunzi, Qualitative properties of positive solutions to systems of quasilinear elliptic equations, Adv. Differential Equations, 20 (2015), 717-740. 

[35]

L. MontoroB. Sciunzi and M. Squassina, Symmetry results for nonvariational quasi-linear elliptic systems, Adv. Nonlinear Stud., 10 (2010), 939-955.  doi: 10.1515/ans-2010-0411.

[36]

S. Peng, Y. F. Peng and Z. O. Wang, On elliptic systems with Sobolev critical growth, Calc. Var. Partial Differential Equations, 55 (2016), Art. 142, 30 pp. doi: 10.1007/s00526-016-1091-7.

[37]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.

[38]

B. Sciunzi, On the moving Plane Method for singular solutions to semilinear elliptic equations, J. Math. Pures Appl., 108 (2017), 111-123.  doi: 10.1016/j.matpur.2016.10.012.

[39]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.

[40]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $ {\mathbb{R}}^n$, Commun. Math. Phys., 271 (2007), 199-221.  doi: 10.1007/s00220-006-0179-x.

[41]

N. Soave, On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var. Partial Differ. Equ., 53 (2015), 689-718.  doi: 10.1007/s00526-014-0764-3.

[42]

N. Soave and H. Tavares, New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, J. Differential Equations, 261 (2016), 505-537.  doi: 10.1016/j.jde.2016.03.015.

[43]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Fourth Edition, Springer-Verlag, Berlin, 2008.

[44]

C. A. Stuart, Existence and approximation of solutions of nonlinear elliptic equations, Math. Z., 147 (1976), 53-63.  doi: 10.1007/BF01214274.

[45]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. 

[46]

W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. of Differential Equations, 42 (1981), 400-413.  doi: 10.1016/0022-0396(81)90113-3.

[1]

Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080

[2]

Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798

[3]

Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

[4]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[5]

Rafael Ortega, James R. Ward Jr. A semilinear elliptic system with vanishing nonlinearities. Conference Publications, 2003, 2003 (Special) : 688-693. doi: 10.3934/proc.2003.2003.688

[6]

Ying-Chieh Lin, Tsung-Fang Wu. On the semilinear fractional elliptic equations with singular weight functions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2067-2084. doi: 10.3934/dcdsb.2020325

[7]

Francesca Alessio, Piero Montecchiari, Andrea Sfecci. Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks and Heterogeneous Media, 2019, 14 (3) : 567-587. doi: 10.3934/nhm.2019022

[8]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[9]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[10]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[11]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[12]

David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335

[13]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[14]

Dongho Chae. Existence of a semilinear elliptic system with exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 709-718. doi: 10.3934/dcds.2007.18.709

[15]

Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331

[16]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[17]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[18]

Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239

[19]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[20]

Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure and Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (247)
  • HTML views (113)
  • Cited by (2)

Other articles
by authors

[Back to Top]