-
Previous Article
Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential
- DCDS Home
- This Issue
-
Next Article
Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities
Existence and nonexistence of subsolutions for augmented Hessian equations
School of Mathematics and Information Science, Weifang University, Weifang 261061, China |
In this paper, we consider the augmented Hessian equations $ S_k^{\frac{1}{k}}[D^2u+\sigma(x)I] = f(u) $ in $ \mathbb{R}^{n} $ or $ \mathbb{R}^{n}_+ $. We first give the necessary and sufficient condition of the existence of classical subsolutions to the equations in $ \mathbb{R}^{n} $ for $ \sigma(x) = \alpha $, which is an extended Keller-Osserman condition. Then we obtain the nonexistence of positive viscosity subsolutions of the equations in $ \mathbb{R}^{n} $ or $ \mathbb{R}^{n}_+ $ for $ f(u) = u^p $ with $ p>1 $.
References:
[1] |
J. G. Bao, X. H. Ji and H. G. Li,
Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations, J. Differential Equations, 253 (2012), 2140-2160.
doi: 10.1016/j.jde.2012.06.018. |
[2] |
L. A. Caffarelli, L. Nirenberg and J. Spruck,
The Dirichlet problem for nonlinear second-order elliptic equations, Ⅰ. Monge-Ampère equation, Comm. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306. |
[3] |
L. Caffarelli, L. Nirenberg and J. Spruck,
The Dirichlet problem for nonlinear second-order elliptic equations. Ⅲ. Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.
doi: 10.1007/BF02392544. |
[4] |
I. Capuzzo Dolcetta, F. Leoni and A. Vitolo,
Entire subsolutions of fully nonlinear degenerate elliptic equations, Bull. Inst. Math. Acad. Sin. (N.S.), 9 (2014), 147-161.
|
[5] |
I. Capuzzo Dolcetta, F. Leoni and A. Vitolo,
On the inequality $F(x, D^2u)\geq f(u)+g(u)|Du|^q$, Math. Ann., 365 (2016), 423-448.
doi: 10.1007/s00208-015-1280-2. |
[6] |
H. Car and R. Pröpper, Removable singularities of $m$-Hessian equations, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 6, 18 pp.
doi: 10.1007/s00030-016-0429-3. |
[7] |
K. S. Chou and X. J. Wang,
A variational theory of the Hessian equation, Comm. Pure Appl. Math., 54 (2001), 1029-1064.
doi: 10.1002/cpa.1016. |
[8] |
D. P. Covei, The Keller-Osserman problem for the $k$-Hessian operator, arXiv: 1508.04653. |
[9] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
A. Cutrì and F. Leoni,
On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.
doi: 10.1016/S0294-1449(00)00109-8. |
[11] |
S. Dumont, L. Dupaigne, O. Goubet and V. Radulescu,
Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298.
doi: 10.1515/ans-2007-0205. |
[12] |
P. L. Felmer and A. Quaas,
On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 843-865.
doi: 10.1016/S0294-1449(03)00011-8. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[14] |
B. Guan,
Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J., 163 (2014), 1491-1524.
doi: 10.1215/00127094-2713591. |
[15] |
Y. Huang, F. D. Jiang and J. K. Liu,
Boundary $C^ {2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.
doi: 10.1016/j.aim.2014.12.043. |
[16] |
X. H. Ji and J. G. Bao,
Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Amer. Math. Soc., 138 (2010), 175-188.
doi: 10.1090/S0002-9939-09-10032-1. |
[17] |
F. D. Jiang and N. S. Trudinger, On the Dirichlet problem for general augmented Hessian equations, arXiv: 1903.12410. |
[18] |
F. D. Jiang, N. S. Trudinger and X. P. Yang,
On the Dirichlet problem for Monge-Ampère type equations, Calc. Var. Partial Differential Equations, 49 (2014), 1223-1236.
doi: 10.1007/s00526-013-0619-3. |
[19] |
F. D. Jiang, N. S. Trudinger and X. P. Yang,
On the Dirichlet problem for a class of augmented Hessian equations, J. Differential Equations, 258 (2015), 1548-1576.
doi: 10.1016/j.jde.2014.11.005. |
[20] |
Q. N. Jin, Y. Y. Li and H. Y. Xu,
Nonexistence of positive solutions for some fully nonlinear elliptic equations, Methods Appl. Anal., 12 (2005), 441-449.
doi: 10.4310/MAA.2005.v12.n4.a5. |
[21] |
J. B. Keller,
On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[22] |
Y. Y. Li,
Some existence results for fully nonlinear elliptic equations of Monge-Ampère type, Comm. Pure Appl. Math., 43 (1990), 233-271.
doi: 10.1002/cpa.3160430204. |
[23] |
J. K. Liu, N. S. Trudinger and X. J. Wang,
Interior $C^ {2, \alpha}$ regularity for potential functions in optimal transportation, Comm. Partial Differential Equations, 35 (2010), 165-184.
doi: 10.1080/03605300903236609. |
[24] |
G. Z. Lu and J. Y. Zhu,
The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations, J. Differential Equations, 258 (2015), 2054-2079.
doi: 10.1016/j.jde.2014.11.022. |
[25] |
X. N. Ma, N. S. Trudinger and X. J. Wang,
Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151-183.
doi: 10.1007/s00205-005-0362-9. |
[26] |
R. Osserman,
On the inequality $\Delta u\geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647.
|
[27] |
N. S. Trudinger,
On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.
doi: 10.1007/BF02393303. |
[28] |
X. J. Wang, The $k$-Hessian equation, Geometric analysis and PDEs, 177–252, Lecture Notes in Math., 1977, Springer, Dordrecht, 2009.
doi: 10.1007/978-3-642-01674-5_5. |
show all references
References:
[1] |
J. G. Bao, X. H. Ji and H. G. Li,
Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations, J. Differential Equations, 253 (2012), 2140-2160.
doi: 10.1016/j.jde.2012.06.018. |
[2] |
L. A. Caffarelli, L. Nirenberg and J. Spruck,
The Dirichlet problem for nonlinear second-order elliptic equations, Ⅰ. Monge-Ampère equation, Comm. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306. |
[3] |
L. Caffarelli, L. Nirenberg and J. Spruck,
The Dirichlet problem for nonlinear second-order elliptic equations. Ⅲ. Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.
doi: 10.1007/BF02392544. |
[4] |
I. Capuzzo Dolcetta, F. Leoni and A. Vitolo,
Entire subsolutions of fully nonlinear degenerate elliptic equations, Bull. Inst. Math. Acad. Sin. (N.S.), 9 (2014), 147-161.
|
[5] |
I. Capuzzo Dolcetta, F. Leoni and A. Vitolo,
On the inequality $F(x, D^2u)\geq f(u)+g(u)|Du|^q$, Math. Ann., 365 (2016), 423-448.
doi: 10.1007/s00208-015-1280-2. |
[6] |
H. Car and R. Pröpper, Removable singularities of $m$-Hessian equations, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 6, 18 pp.
doi: 10.1007/s00030-016-0429-3. |
[7] |
K. S. Chou and X. J. Wang,
A variational theory of the Hessian equation, Comm. Pure Appl. Math., 54 (2001), 1029-1064.
doi: 10.1002/cpa.1016. |
[8] |
D. P. Covei, The Keller-Osserman problem for the $k$-Hessian operator, arXiv: 1508.04653. |
[9] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
A. Cutrì and F. Leoni,
On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.
doi: 10.1016/S0294-1449(00)00109-8. |
[11] |
S. Dumont, L. Dupaigne, O. Goubet and V. Radulescu,
Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298.
doi: 10.1515/ans-2007-0205. |
[12] |
P. L. Felmer and A. Quaas,
On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 843-865.
doi: 10.1016/S0294-1449(03)00011-8. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[14] |
B. Guan,
Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J., 163 (2014), 1491-1524.
doi: 10.1215/00127094-2713591. |
[15] |
Y. Huang, F. D. Jiang and J. K. Liu,
Boundary $C^ {2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.
doi: 10.1016/j.aim.2014.12.043. |
[16] |
X. H. Ji and J. G. Bao,
Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Amer. Math. Soc., 138 (2010), 175-188.
doi: 10.1090/S0002-9939-09-10032-1. |
[17] |
F. D. Jiang and N. S. Trudinger, On the Dirichlet problem for general augmented Hessian equations, arXiv: 1903.12410. |
[18] |
F. D. Jiang, N. S. Trudinger and X. P. Yang,
On the Dirichlet problem for Monge-Ampère type equations, Calc. Var. Partial Differential Equations, 49 (2014), 1223-1236.
doi: 10.1007/s00526-013-0619-3. |
[19] |
F. D. Jiang, N. S. Trudinger and X. P. Yang,
On the Dirichlet problem for a class of augmented Hessian equations, J. Differential Equations, 258 (2015), 1548-1576.
doi: 10.1016/j.jde.2014.11.005. |
[20] |
Q. N. Jin, Y. Y. Li and H. Y. Xu,
Nonexistence of positive solutions for some fully nonlinear elliptic equations, Methods Appl. Anal., 12 (2005), 441-449.
doi: 10.4310/MAA.2005.v12.n4.a5. |
[21] |
J. B. Keller,
On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[22] |
Y. Y. Li,
Some existence results for fully nonlinear elliptic equations of Monge-Ampère type, Comm. Pure Appl. Math., 43 (1990), 233-271.
doi: 10.1002/cpa.3160430204. |
[23] |
J. K. Liu, N. S. Trudinger and X. J. Wang,
Interior $C^ {2, \alpha}$ regularity for potential functions in optimal transportation, Comm. Partial Differential Equations, 35 (2010), 165-184.
doi: 10.1080/03605300903236609. |
[24] |
G. Z. Lu and J. Y. Zhu,
The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations, J. Differential Equations, 258 (2015), 2054-2079.
doi: 10.1016/j.jde.2014.11.022. |
[25] |
X. N. Ma, N. S. Trudinger and X. J. Wang,
Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151-183.
doi: 10.1007/s00205-005-0362-9. |
[26] |
R. Osserman,
On the inequality $\Delta u\geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647.
|
[27] |
N. S. Trudinger,
On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.
doi: 10.1007/BF02393303. |
[28] |
X. J. Wang, The $k$-Hessian equation, Geometric analysis and PDEs, 177–252, Lecture Notes in Math., 1977, Springer, Dordrecht, 2009.
doi: 10.1007/978-3-642-01674-5_5. |
[1] |
Marie-Françoise Bidaut-Véron, Marta García-Huidobro, Cecilia Yarur. Keller-Osserman estimates for some quasilinear elliptic systems. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1547-1568. doi: 10.3934/cpaa.2013.12.1547 |
[2] |
Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002 |
[3] |
Nina Ivochkina, Nadezda Filimonenkova. On the backgrounds of the theory of m-Hessian equations. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1687-1703. doi: 10.3934/cpaa.2013.12.1687 |
[4] |
Chuanqiang Chen, Li Chen, Xinqun Mei, Ni Xiang. The Neumann problem for a class of mixed complex Hessian equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022049 |
[5] |
Bo Guan, Heming Jiao. The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 701-714. doi: 10.3934/dcds.2016.36.701 |
[6] |
Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013 |
[7] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377 |
[8] |
Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020 |
[9] |
Junjie Zhang, Shenzhou Zheng, Haiyan Yu. $ L^{p(\cdot)} $-regularity of Hessian for nondivergence parabolic and elliptic equations with measurable coefficients. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2777-2796. doi: 10.3934/cpaa.2020121 |
[10] |
Kods Hassine. Existence and uniqueness of radial solutions for Hardy-Hénon equations involving k-Hessian operators. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022084 |
[11] |
Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503 |
[12] |
Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 139-164. doi: 10.3934/dcdss.2020008 |
[13] |
Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001 |
[14] |
Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248 |
[15] |
Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165 |
[16] |
Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453 |
[17] |
Jacob Bedrossian, Nancy Rodríguez. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in $\mathbb{R}^d$. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1279-1309. doi: 10.3934/dcdsb.2014.19.1279 |
[18] |
Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107 |
[19] |
Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks and Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002 |
[20] |
Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]