In this paper, we consider the augmented Hessian equations $ S_k^{\frac{1}{k}}[D^2u+\sigma(x)I] = f(u) $ in $ \mathbb{R}^{n} $ or $ \mathbb{R}^{n}_+ $. We first give the necessary and sufficient condition of the existence of classical subsolutions to the equations in $ \mathbb{R}^{n} $ for $ \sigma(x) = \alpha $, which is an extended Keller-Osserman condition. Then we obtain the nonexistence of positive viscosity subsolutions of the equations in $ \mathbb{R}^{n} $ or $ \mathbb{R}^{n}_+ $ for $ f(u) = u^p $ with $ p>1 $.
Citation: |
[1] |
J. G. Bao, X. H. Ji and H. G. Li, Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations, J. Differential Equations, 253 (2012), 2140-2160.
doi: 10.1016/j.jde.2012.06.018.![]() ![]() ![]() |
[2] |
L. A. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations, Ⅰ. Monge-Ampère equation, Comm. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306.![]() ![]() ![]() |
[3] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. Ⅲ. Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.
doi: 10.1007/BF02392544.![]() ![]() ![]() |
[4] |
I. Capuzzo Dolcetta, F. Leoni and A. Vitolo, Entire subsolutions of fully nonlinear degenerate elliptic equations, Bull. Inst. Math. Acad. Sin. (N.S.), 9 (2014), 147-161.
![]() ![]() |
[5] |
I. Capuzzo Dolcetta, F. Leoni and A. Vitolo, On the inequality $F(x, D^2u)\geq f(u)+g(u)|Du|^q$, Math. Ann., 365 (2016), 423-448.
doi: 10.1007/s00208-015-1280-2.![]() ![]() ![]() |
[6] |
H. Car and R. Pröpper, Removable singularities of $m$-Hessian equations, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 6, 18 pp.
doi: 10.1007/s00030-016-0429-3.![]() ![]() ![]() |
[7] |
K. S. Chou and X. J. Wang, A variational theory of the Hessian equation, Comm. Pure Appl. Math., 54 (2001), 1029-1064.
doi: 10.1002/cpa.1016.![]() ![]() ![]() |
[8] |
D. P. Covei, The Keller-Osserman problem for the $k$-Hessian operator, arXiv: 1508.04653.
![]() |
[9] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5.![]() ![]() ![]() |
[10] |
A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.
doi: 10.1016/S0294-1449(00)00109-8.![]() ![]() ![]() |
[11] |
S. Dumont, L. Dupaigne, O. Goubet and V. Radulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271-298.
doi: 10.1515/ans-2007-0205.![]() ![]() ![]() |
[12] |
P. L. Felmer and A. Quaas, On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 843-865.
doi: 10.1016/S0294-1449(03)00011-8.![]() ![]() ![]() |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
![]() ![]() |
[14] |
B. Guan, Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J., 163 (2014), 1491-1524.
doi: 10.1215/00127094-2713591.![]() ![]() ![]() |
[15] |
Y. Huang, F. D. Jiang and J. K. Liu, Boundary $C^ {2, \alpha}$ estimates for Monge-Ampère type equations, Adv. Math., 281 (2015), 706-733.
doi: 10.1016/j.aim.2014.12.043.![]() ![]() ![]() |
[16] |
X. H. Ji and J. G. Bao, Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Amer. Math. Soc., 138 (2010), 175-188.
doi: 10.1090/S0002-9939-09-10032-1.![]() ![]() ![]() |
[17] |
F. D. Jiang and N. S. Trudinger, On the Dirichlet problem for general augmented Hessian equations, arXiv: 1903.12410.
![]() |
[18] |
F. D. Jiang, N. S. Trudinger and X. P. Yang, On the Dirichlet problem for Monge-Ampère type equations, Calc. Var. Partial Differential Equations, 49 (2014), 1223-1236.
doi: 10.1007/s00526-013-0619-3.![]() ![]() ![]() |
[19] |
F. D. Jiang, N. S. Trudinger and X. P. Yang, On the Dirichlet problem for a class of augmented Hessian equations, J. Differential Equations, 258 (2015), 1548-1576.
doi: 10.1016/j.jde.2014.11.005.![]() ![]() ![]() |
[20] |
Q. N. Jin, Y. Y. Li and H. Y. Xu, Nonexistence of positive solutions for some fully nonlinear elliptic equations, Methods Appl. Anal., 12 (2005), 441-449.
doi: 10.4310/MAA.2005.v12.n4.a5.![]() ![]() ![]() |
[21] |
J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402.![]() ![]() ![]() |
[22] |
Y. Y. Li, Some existence results for fully nonlinear elliptic equations of Monge-Ampère type, Comm. Pure Appl. Math., 43 (1990), 233-271.
doi: 10.1002/cpa.3160430204.![]() ![]() ![]() |
[23] |
J. K. Liu, N. S. Trudinger and X. J. Wang, Interior $C^ {2, \alpha}$ regularity for potential functions in optimal transportation, Comm. Partial Differential Equations, 35 (2010), 165-184.
doi: 10.1080/03605300903236609.![]() ![]() ![]() |
[24] |
G. Z. Lu and J. Y. Zhu, The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations, J. Differential Equations, 258 (2015), 2054-2079.
doi: 10.1016/j.jde.2014.11.022.![]() ![]() ![]() |
[25] |
X. N. Ma, N. S. Trudinger and X. J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177 (2005), 151-183.
doi: 10.1007/s00205-005-0362-9.![]() ![]() ![]() |
[26] |
R. Osserman, On the inequality $\Delta u\geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647.
![]() ![]() |
[27] |
N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.
doi: 10.1007/BF02393303.![]() ![]() ![]() |
[28] |
X. J. Wang, The $k$-Hessian equation, Geometric analysis and PDEs, 177–252, Lecture Notes in Math., 1977, Springer, Dordrecht, 2009.
doi: 10.1007/978-3-642-01674-5_5.![]() ![]() ![]() |