-
Previous Article
Traveling waves for some nonlocal 1D Gross–Pitaevskii equations with nonzero conditions at infinity
- DCDS Home
- This Issue
-
Next Article
Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential
Global stability of Keller–Segel systems in critical Lebesgue spaces
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, HuBei Province, China |
$\left\{ {\begin{array}{*{20}{l}}{{\rho _t} - \Delta \rho = - \nabla \cdot (\rho \nabla c),\qquad }&{x \in \Omega ,\;t}&{ > 0}\\{\gamma {c_t} - \Delta c + c = \rho ,\qquad }&{x \in \Omega ,\;t}&{ > 0}\end{array}} \right.\;\;\;\;\;\;\left( 1 \right)$ |
$ \Omega\subset\mathbb{R}^d $ |
$ d\geq2 $ |
$ \gamma\geq0 $ |
$ \rho = c\equiv\mathcal{M}>0 $ |
$ \mathcal{M} $ |
$ 0<\mathcal{M}<1+\lambda_1 $ |
$ \lambda_1 $ |
$ \varepsilon_0>0 $ |
$ (\rho_0,\gamma c_0) $ |
$\frac{1}{{|\Omega |}}\int_\Omega {{\rho _0}} dx - {\cal M} = \gamma \left( {\frac{1}{{|\Omega |}}\int_\Omega {{c_0}} dx - {\cal M}} \right) = 0\;\;\;\;\;\;\;\left( 2 \right)$ |
${\rho _0} - {\cal M}{_{{L^{d/2}}(\Omega )}} + \gamma \nabla {c_0}{_{{L^d}(\Omega )}} < {\varepsilon _0},\;\;\;\;\;\;\;\left( 3 \right)$ |
$ (\mathcal{M},\mathcal{M}) $ |
$ L^p-L^q $ |
$ m\triangleq\int_\Omega \rho_0 dx $ |
$ d = 2 $ |
$ d\geq3 $ |
$ m $ |
$ |\Omega| $ |
$ m<(1+\lambda_1)|\Omega| $ |
References:
[1] |
M. Ashbaugh and A. Levine, Inequalities for Dirichlet and Neumann eigenvalues of the laplacian for domains on sphere, Journées Équations Aux Dérivées Partielles, 1997, 1–15. |
[2] |
N. Bellomo, A. Belouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller–Segel models of pattern formation in biology tissues, Math. Mod. Meth. Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[3] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dynam. Syst. Ser. A, 35 (2015), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[4] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publ., Polish Acad. Sci., Warsaw, 81 (2008), 105–117.
doi: 10.4064/bc81-0-7. |
[5] |
K.J. Engel and R. Nagel, One-parameter Semigroup for Linear Evolution Equations, GTM194, Springer, 2000. |
[6] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[7] |
D. Horstmann and G.-F. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, Euro. J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[8] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Different. Equ., 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[9] |
J. Jiang,
Global stability of homogeneous steady states in scaling-invariant spaces for a Keller–Segel–Navier–Stokes system, J. Different. Equ., 267 (2019), 659-692.
doi: 10.1016/j.jde.2019.01.022. |
[10] |
J. Jiang, Eventual smoothness and exponential stabilization of global weak solutions to some chemotaxis systems, preprint, submitted. |
[11] |
J. Jiang, H. Wu and S. Zheng,
Blow-up for a three dimensional Kelle–Segel model with consumption of chemoattractant, J. Different. Equ., 264 (2018), 5432-5464.
doi: 10.1016/j.jde.2018.01.004. |
[12] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[13] |
A. Kiselev and X. Xu,
Suppression of chemotactic explosion by mixing, Arch. Rational Mech. Anal., 222 (2016), 1077-1112.
doi: 10.1007/s00205-016-1017-8. |
[14] |
H. Kozono, M. Miura and Y. Sugiyama,
Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid, J. Funct. Anal., 270 (2016), 1663-1683.
doi: 10.1016/j.jfa.2015.10.016. |
[15] |
A. Lorz,
A coupled Keller–Segel–Stokes model: Global existence for small initial data and blow-up delay, Commun. Math. Sci., 10 (2012), 555-574.
doi: 10.4310/CMS.2012.v10.n2.a7. |
[16] |
T. Nagai and T. Senba,
Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.
|
[17] |
T. Nagai, T. Senba and T. Suzuki,
Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497.
doi: 10.32917/hmj/1206124609. |
[18] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Different. Equ., 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[19] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[20] |
H. Yu, W. Wang and S. Zheng,
Global classical solutions to the Keller–Segel–Navier–Stokes system with matrix-valued sensitivity, J. Math. Anal. Appl., 461 (2018), 1748-1770.
doi: 10.1016/j.jmaa.2017.12.048. |
[21] |
S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC, Boca Raton, FL, 2004.
doi: 10.1201/9780203492222. |
show all references
References:
[1] |
M. Ashbaugh and A. Levine, Inequalities for Dirichlet and Neumann eigenvalues of the laplacian for domains on sphere, Journées Équations Aux Dérivées Partielles, 1997, 1–15. |
[2] |
N. Bellomo, A. Belouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller–Segel models of pattern formation in biology tissues, Math. Mod. Meth. Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[3] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dynam. Syst. Ser. A, 35 (2015), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[4] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publ., Polish Acad. Sci., Warsaw, 81 (2008), 105–117.
doi: 10.4064/bc81-0-7. |
[5] |
K.J. Engel and R. Nagel, One-parameter Semigroup for Linear Evolution Equations, GTM194, Springer, 2000. |
[6] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[7] |
D. Horstmann and G.-F. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, Euro. J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[8] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Different. Equ., 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[9] |
J. Jiang,
Global stability of homogeneous steady states in scaling-invariant spaces for a Keller–Segel–Navier–Stokes system, J. Different. Equ., 267 (2019), 659-692.
doi: 10.1016/j.jde.2019.01.022. |
[10] |
J. Jiang, Eventual smoothness and exponential stabilization of global weak solutions to some chemotaxis systems, preprint, submitted. |
[11] |
J. Jiang, H. Wu and S. Zheng,
Blow-up for a three dimensional Kelle–Segel model with consumption of chemoattractant, J. Different. Equ., 264 (2018), 5432-5464.
doi: 10.1016/j.jde.2018.01.004. |
[12] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[13] |
A. Kiselev and X. Xu,
Suppression of chemotactic explosion by mixing, Arch. Rational Mech. Anal., 222 (2016), 1077-1112.
doi: 10.1007/s00205-016-1017-8. |
[14] |
H. Kozono, M. Miura and Y. Sugiyama,
Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid, J. Funct. Anal., 270 (2016), 1663-1683.
doi: 10.1016/j.jfa.2015.10.016. |
[15] |
A. Lorz,
A coupled Keller–Segel–Stokes model: Global existence for small initial data and blow-up delay, Commun. Math. Sci., 10 (2012), 555-574.
doi: 10.4310/CMS.2012.v10.n2.a7. |
[16] |
T. Nagai and T. Senba,
Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.
|
[17] |
T. Nagai, T. Senba and T. Suzuki,
Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497.
doi: 10.32917/hmj/1206124609. |
[18] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Different. Equ., 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[19] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[20] |
H. Yu, W. Wang and S. Zheng,
Global classical solutions to the Keller–Segel–Navier–Stokes system with matrix-valued sensitivity, J. Math. Anal. Appl., 461 (2018), 1748-1770.
doi: 10.1016/j.jmaa.2017.12.048. |
[21] |
S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC, Boca Raton, FL, 2004.
doi: 10.1201/9780203492222. |
[1] |
Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic and Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777 |
[2] |
Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317 |
[3] |
Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure and Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383 |
[4] |
Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345 |
[5] |
Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007 |
[6] |
Xinru Cao. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1891-1904. doi: 10.3934/dcds.2015.35.1891 |
[7] |
Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117 |
[8] |
Ling Liu, Jiashan Zheng, Gui Bao. Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3437-3460. doi: 10.3934/dcdsb.2020068 |
[9] |
Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901 |
[10] |
Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911 |
[11] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[12] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[13] |
Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011 |
[14] |
Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243 |
[15] |
Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050 |
[16] |
José Antonio Carrillo, Stefano Lisini, Edoardo Mainini. Uniqueness for Keller-Segel-type chemotaxis models. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1319-1338. doi: 10.3934/dcds.2014.34.1319 |
[17] |
Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino. A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2053-2086. doi: 10.3934/dcdss.2022044 |
[18] |
Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81 |
[19] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations and Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[20] |
Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]