-
Previous Article
Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere
- DCDS Home
- This Issue
-
Next Article
Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms
Global stabilization of the full attraction-repulsion Keller-Segel system
1. | Department of Mathematics, South China University of Technology, Guangzhou 510640, China |
2. | Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China |
$\left\{ {\begin{array}{*{20}{l}}{{u_t} = \Delta u - \nabla \cdot (\chi u\nabla v) + \nabla \cdot (\xi u\nabla w),}&{x \in \Omega ,t > 0,}\\{{v_t} = {D_1}\Delta v + \alpha u - \beta v,}&{x \in \Omega ,t > 0,}\\{{w_t} = {D_2}\Delta w + \gamma u - \delta w,}&{x \in \Omega ,t > 0,}\\{u(x,0) = {u_0}(x),v(x,0) = {v_0}(x),w(x,0) = {w_0}(x)}&{x \in \Omega ,}\end{array}} \right.\;\;\;\;\left( * \right)$ |
$ \Omega\subset \mathbb{R}^2 $ |
$ (u_0,v_0,w_0) \in [W^{1,\infty}(\Omega)]^3 $ |
$ \frac{\xi\gamma}{\chi\alpha}\geq \max\Big\{\frac{D_1}{D_2},\frac{D_2}{D_1},\frac{\beta}{\delta},\frac{\delta}{\beta}\Big\} $ |
$ D_1,D_2,\chi,\xi,\alpha,\beta,\gamma $ |
$ \delta $ |
$ (u,v,w) $ |
$ (\bar{u}_0,\frac{\alpha}{\beta}\bar{u}_0,\frac{\gamma}{\delta}\bar{u}_0) $ |
$ t\to+\infty $ |
$ \bar{u}_0 = \frac{1}{|\Omega|}\int_\Omega u_0dx $ |
$ \frac{\xi\gamma}{\chi\alpha}> \max\Big\{\frac{\beta}{\delta},\frac{\delta}{\beta}\Big\} $ |
$ D_1\ne D_2 $ |
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
J. P. Bourguignon and H. Brezis,
Remarks on Euler Equation, J. Functional Analysis, 15 (1974), 341-363.
doi: 10.1016/0022-1236(74)90027-5. |
[3] |
J. A. Carrillo, A. Juöngle, P. A. Markowich, G. Toscani and A. Unterreiter,
Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.
doi: 10.1007/s006050170032. |
[4] |
T. Cieślak, Ph. Laurenc |
[5] |
E. Espejo and T. Suzuki,
Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34.
doi: 10.1016/j.aml.2014.04.007. |
[6] |
D. Horstemann,
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math. Verien., 105 (2003), 103-165.
|
[7] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[8] |
H. Y. Jin,
Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.
doi: 10.1016/j.jmaa.2014.09.049. |
[9] |
H. Y. Jin and Z. Liu,
Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space, Appl. Math. Lett., 47 (2015), 13-20.
doi: 10.1016/j.aml.2015.03.004. |
[10] |
H. Y. Jin and Z. A. Wang,
Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.
doi: 10.1002/mma.3080. |
[11] |
H. Y. Jin and Z. A. Wang,
Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[12] |
R. Kowalczyk and Z. Szyma$\acute{n}$ska,
On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.
doi: 10.1016/j.jmaa.2008.01.005. |
[13] |
O. Ladyzhenskaya, V. Solonnikov and N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 1968. |
[14] |
Y. Li and Y. X. Li,
Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. Real Word Appl., 30 (2016), 170-183.
doi: 10.1016/j.nonrwa.2015.12.003. |
[15] |
K. Lin and C. Mu,
Global existence and convergence to steady states for an attraction-repulsion chemotaxis system, Nonlinear Anal. Real Word Appl., 31 (2016), 630-642.
doi: 10.1016/j.nonrwa.2016.03.012. |
[16] |
K. Lin, C. Mu and L. Wang,
Large-time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124.
doi: 10.1016/j.jmaa.2014.12.052. |
[17] |
K. Lin, C. Mu and D. Zhou,
Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction, Math. Models Methods Appl. Sci., 28 (2018), 1105-1134.
doi: 10.1142/S021820251850029X. |
[18] |
D. Liu and Y. S. Tao,
Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.
doi: 10.1002/mma.3240. |
[19] |
P. Liu, J. P. Shi and Z. A. Wang,
Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597. |
[20] |
J. Liu and Z. A. Wang,
Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn., 6 (2012), 31-41.
doi: 10.1080/17513758.2011.571722. |
[21] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner,
Chemotactic signalling, Microglia, and Alzheimer's disease senile plagues: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730.
|
[22] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[23] |
K. J. Painter and T. Hillen,
Volume-filling quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
|
[24] |
M. M. Porzio and V. Vespri,
Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[25] |
R. Shi and W. Wang,
Well-posedness for a model derived from an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 423 (2015), 497-520.
doi: 10.1016/j.jmaa.2014.10.006. |
[26] |
Y. S. Tao,
Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722.
doi: 10.3934/dcdsb.2013.18.2705. |
[27] |
Y. S. Tao and Z. A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[28] |
Y. S. Tao and M. Winkler,
Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.
doi: 10.1137/15M1014115. |
[29] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[30] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
show all references
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
J. P. Bourguignon and H. Brezis,
Remarks on Euler Equation, J. Functional Analysis, 15 (1974), 341-363.
doi: 10.1016/0022-1236(74)90027-5. |
[3] |
J. A. Carrillo, A. Juöngle, P. A. Markowich, G. Toscani and A. Unterreiter,
Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.
doi: 10.1007/s006050170032. |
[4] |
T. Cieślak, Ph. Laurenc |
[5] |
E. Espejo and T. Suzuki,
Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34.
doi: 10.1016/j.aml.2014.04.007. |
[6] |
D. Horstemann,
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math. Verien., 105 (2003), 103-165.
|
[7] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[8] |
H. Y. Jin,
Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.
doi: 10.1016/j.jmaa.2014.09.049. |
[9] |
H. Y. Jin and Z. Liu,
Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space, Appl. Math. Lett., 47 (2015), 13-20.
doi: 10.1016/j.aml.2015.03.004. |
[10] |
H. Y. Jin and Z. A. Wang,
Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.
doi: 10.1002/mma.3080. |
[11] |
H. Y. Jin and Z. A. Wang,
Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[12] |
R. Kowalczyk and Z. Szyma$\acute{n}$ska,
On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.
doi: 10.1016/j.jmaa.2008.01.005. |
[13] |
O. Ladyzhenskaya, V. Solonnikov and N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 1968. |
[14] |
Y. Li and Y. X. Li,
Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. Real Word Appl., 30 (2016), 170-183.
doi: 10.1016/j.nonrwa.2015.12.003. |
[15] |
K. Lin and C. Mu,
Global existence and convergence to steady states for an attraction-repulsion chemotaxis system, Nonlinear Anal. Real Word Appl., 31 (2016), 630-642.
doi: 10.1016/j.nonrwa.2016.03.012. |
[16] |
K. Lin, C. Mu and L. Wang,
Large-time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124.
doi: 10.1016/j.jmaa.2014.12.052. |
[17] |
K. Lin, C. Mu and D. Zhou,
Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction, Math. Models Methods Appl. Sci., 28 (2018), 1105-1134.
doi: 10.1142/S021820251850029X. |
[18] |
D. Liu and Y. S. Tao,
Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.
doi: 10.1002/mma.3240. |
[19] |
P. Liu, J. P. Shi and Z. A. Wang,
Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597. |
[20] |
J. Liu and Z. A. Wang,
Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn., 6 (2012), 31-41.
doi: 10.1080/17513758.2011.571722. |
[21] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner,
Chemotactic signalling, Microglia, and Alzheimer's disease senile plagues: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730.
|
[22] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[23] |
K. J. Painter and T. Hillen,
Volume-filling quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
|
[24] |
M. M. Porzio and V. Vespri,
Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[25] |
R. Shi and W. Wang,
Well-posedness for a model derived from an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 423 (2015), 497-520.
doi: 10.1016/j.jmaa.2014.10.006. |
[26] |
Y. S. Tao,
Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722.
doi: 10.3934/dcdsb.2013.18.2705. |
[27] |
Y. S. Tao and Z. A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[28] |
Y. S. Tao and M. Winkler,
Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.
doi: 10.1137/15M1014115. |
[29] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[30] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[1] |
Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050 |
[2] |
Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180 |
[3] |
Miaoqing Tian, Shujuan Wang, Xia Xiao. Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022071 |
[4] |
Aichao Liu, Binxiang Dai, Yuming Chen. Boundedness in a two species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021306 |
[5] |
Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197 |
[6] |
Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031 |
[7] |
Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260 |
[8] |
Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic and Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034 |
[9] |
Lianzhang Bao, Wenxian Shen. Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1107-1130. doi: 10.3934/dcds.2020072 |
[10] |
Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597 |
[11] |
Runlin Hu, Pan Zheng. On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022041 |
[12] |
Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148 |
[13] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002 |
[14] |
Zhanyuan Hou, Stephen Baigent. Global stability and repulsion in autonomous Kolmogorov systems. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1205-1238. doi: 10.3934/cpaa.2015.14.1205 |
[15] |
Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705 |
[16] |
Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110 |
[17] |
Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503 |
[18] |
Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267 |
[19] |
Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064 |
[20] |
Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]