-
Previous Article
Simulation of post-hurricane impact on invasive species with biological control management
- DCDS Home
- This Issue
-
Next Article
Monotone and nonmonotone clines with partial panmixia across a geographical barrier
Refined regularity and stabilization properties in a degenerate haptotaxis system
1. | Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany |
2. | Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstrasse 7, 64289 Darmstadt, Germany |
$ \left\{ \begin{array}{l} u_t = (d(x)u)_{xx} - (d(x)uw_x )_x, \\ w_t = -ug(w), \end{array} \right. $ |
$ \Omega \subset \mathbb{R} $ |
$ d $ |
$ \int_\Omega \frac{1}{d} <\infty $ |
$ u(\cdot,t) \rightharpoonup \frac{\mu_\infty}{d} $ |
$ L^1 (\Omega) $ |
$ t \to \infty $ |
$ \mu_\infty $ |
$ \int_\Omega \frac{1}{d^2} <\infty $ |
$ u(\cdot,t)\to \frac{\mu_\infty}{d} $ |
$ L^p (\Omega) $ |
$ t \to \infty $ |
$ p \in (1,2) $ |
$ d $ |
$ u $ |
$ du \in L^\infty ((0,\infty); L^p(\Omega)) $ |
$ p \in (1,\infty) $ |
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
J. Belmonte-Beitia, T. E. Woolley, J. G. Scott, P. K. Maini and E. A. Gaffney,
Modelling biological invasions: Individual to population scales at interfaces, J. Theoret. Biol., 334 (2013), 1-12.
doi: 10.1016/j.jtbi.2013.05.033. |
[3] |
P. Biler, W. Hebisch and T. Nadzieja,
The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.
doi: 10.1016/0362-546X(94)90101-5. |
[4] |
S. B. Carter,
Haptotaxis and the mechanism of cell motility, Nature, 213 (1967), 256-260.
doi: 10.1038/213256a0. |
[5] |
M. A. J. Chaplain and G. Lolas,
Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439.
doi: 10.3934/nhm.2006.1.399. |
[6] |
L. Corrias, B. Perthame and H. Zaag,
Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[7] |
M. A. Fontelos, A. Friedman and B. Hu,
Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.
doi: 10.1137/S0036141001385046. |
[8] |
K. Fujie, A. Ito, M. Winkler and T. Yokota,
Stabilization in a chemotaxis model for tumor invasion, Discrete Cont. Dyn. Syst., 36 (2016), 151-169.
doi: 10.3934/dcds.2016.36.151. |
[9] |
M. M. Porzio and V. Vespri,
Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[10] |
C. Surulescu and M. Winkler,
Global weak solutions to a strongly degenerate haptotaxis model, Commun. Math. Sci., 15 (2017), 1581-1616.
doi: 10.4310/CMS.2017.v15.n6.a5. |
[11] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[12] |
M. Winkler,
Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, J. Math. Pures Appl., 112 (2018), 118-169.
doi: 10.1016/j.matpur.2017.11.002. |
[13] |
A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys., 67 (2016), Art. 146, 29 pp.
doi: 10.1007/s00033-016-0741-0. |
show all references
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
J. Belmonte-Beitia, T. E. Woolley, J. G. Scott, P. K. Maini and E. A. Gaffney,
Modelling biological invasions: Individual to population scales at interfaces, J. Theoret. Biol., 334 (2013), 1-12.
doi: 10.1016/j.jtbi.2013.05.033. |
[3] |
P. Biler, W. Hebisch and T. Nadzieja,
The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.
doi: 10.1016/0362-546X(94)90101-5. |
[4] |
S. B. Carter,
Haptotaxis and the mechanism of cell motility, Nature, 213 (1967), 256-260.
doi: 10.1038/213256a0. |
[5] |
M. A. J. Chaplain and G. Lolas,
Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439.
doi: 10.3934/nhm.2006.1.399. |
[6] |
L. Corrias, B. Perthame and H. Zaag,
Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[7] |
M. A. Fontelos, A. Friedman and B. Hu,
Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.
doi: 10.1137/S0036141001385046. |
[8] |
K. Fujie, A. Ito, M. Winkler and T. Yokota,
Stabilization in a chemotaxis model for tumor invasion, Discrete Cont. Dyn. Syst., 36 (2016), 151-169.
doi: 10.3934/dcds.2016.36.151. |
[9] |
M. M. Porzio and V. Vespri,
Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[10] |
C. Surulescu and M. Winkler,
Global weak solutions to a strongly degenerate haptotaxis model, Commun. Math. Sci., 15 (2017), 1581-1616.
doi: 10.4310/CMS.2017.v15.n6.a5. |
[11] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[12] |
M. Winkler,
Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, J. Math. Pures Appl., 112 (2018), 118-169.
doi: 10.1016/j.matpur.2017.11.002. |
[13] |
A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys., 67 (2016), Art. 146, 29 pp.
doi: 10.1007/s00033-016-0741-0. |
[1] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[2] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[3] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[4] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[5] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[6] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[7] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[8] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[9] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[10] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[11] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[12] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[13] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[14] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[15] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[16] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[17] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[18] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[19] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[20] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]