
-
Previous Article
Large time behavior of ODE type solutions to nonlinear diffusion equations
- DCDS Home
- This Issue
-
Next Article
Spike solutions for a mass conservation reaction-diffusion system
Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity
Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan |
This paper deals with a free boundary problem for a reaction-diffusion equation in a one-dimensional interval whose boundary consists of a fixed end-point and a moving one. We put homogeneous Dirichlet condition at the fixed boundary, while we assume that the dynamics of the moving boundary is governed by the Stefan condition. Such free boundary problems have been studied by a lot of researchers. We will take a nonlinear reaction term of positive bistable type which exhibits interesting properties of solutions such as multiple spreading phenomena. In fact, it will be proved that large-time behaviors of solutions can be classified into three types; vanishing, small spreading and big spreading. Some sufficient conditions for these behaviors are also shown. Moreover, for two types of spreading, we will give sharp estimates of spreading speed of each free boundary and asymptotic profiles of each solution.
References:
[1] |
S. Angenent,
The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79. |
[2] |
G. Bunting, Y. Du and K. Krakowski,
Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
doi: 10.3934/nhm.2012.7.583. |
[3] |
W. Choi and I. Ahn,
Non-uniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, J. Math. Anal. Appl., 479 (2019), 283-314.
doi: 10.1016/j.jmaa.2019.06.027. |
[4] |
W. Ding, R. Peng and L. Wei,
The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779.
doi: 10.1016/j.jde.2017.04.013. |
[5] |
Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405; SIAM J. Math. Anal., 45 (2013), 1995–1996 (erratum).
doi: 10.1137/090771089. |
[6] |
Y. Du and B. Lou,
Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.
doi: 10.4171/JEMS/568. |
[7] |
Y. Du, B. Lou and M. Zhou,
Nonlinear diffusion problems with free boundaries: Convergence, transition speed, and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.
doi: 10.1137/140994848. |
[8] |
Y. Du and H. Matano,
Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279-312.
doi: 10.4171/JEMS/198. |
[9] |
Y. Du, H. Matsuzawa and M. Zhou,
Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.
doi: 10.1137/130908063. |
[10] |
J. S. Guo and C. H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[11] |
Y. Kaneko, K. Oeda and Y. Yamada,
Remarks on spreading and vanishing for free boundary problems of some reaction-diffusion equations, Funkcial. Ekvac., 57 (2014), 449-465.
doi: 10.1619/fesi.57.449. |
[12] |
Y. Kaneko and Y. Yamada,
A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.
|
[13] |
Y. Kaneko and Y. Yamada,
Spreading speed and profiles of solutions to a free boundary problem with Dirichlet boundary conditions, J. Math. Anal. Appl., 465 (2018), 1159-1175.
doi: 10.1016/j.jmaa.2018.05.056. |
[14] |
Y. Kaneko and H. Matsuzawa,
Spreading and vanishing in a free boundary problem for nonlinear diffusion equations with a given forced moving boundary, J. Differential Equations, 265 (2018), 1000-1043.
doi: 10.1016/j.jde.2018.03.026. |
[15] |
Y. Kaneko, H. Matsuzawa and Y. Yamada, Asymptotic profiles of solutions and propagating terrace for a free boundary problem of reaction-diffusion equation with positive bistable nonlinearity, to appear in SIAM J. Math. Anal. Google Scholar |
[16] |
Y. Kawai and Y. Yamada,
Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.
doi: 10.1016/j.jde.2016.03.017. |
[17] |
C. Lei, H. Matsuzawa, R. Peng and M. Zhou,
Refined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion type, J. Differential Equations, 265 (2018), 2897-2920.
doi: 10.1016/j.jde.2018.04.053. |
[18] |
X. Liu and B. Lou,
Asymptotic behavior of solutions to diffusion problems with Robin and free boundary conditions, Math. Model. Nat. Phenom., 8 (2013), 18-32.
doi: 10.1051/mmnp/20138303. |
[19] |
X. Liu and B. Lou,
On a reaction-diffusion equation with Robin and free boundary conditions, J. Differential Equations, 259 (2015), 423-453.
doi: 10.1016/j.jde.2015.02.012. |
[20] |
B. Lou,
Convergence in time-periodic quasilinear parabolic equations in one space dimension, J. Differential Equations, 265 (2018), 3952-3969.
doi: 10.1016/j.jde.2018.05.025. |
[21] |
D. Ludwig, D. G. Aronson and H. F. Weinberger,
Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.
doi: 10.1007/BF00276310. |
[22] |
H. Matsuzawa,
A free boundary problem for the Fisher-KPP equation with a given moving boundary, Commun. Pure Appl. Anal., 17 (2018), 1821-1852.
doi: 10.3934/cpaa.2018087. |
[23] |
D. Sattinger,
Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
[24] |
J. Smoller and A. Wasserman,
Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.
doi: 10.1016/0022-0396(81)90077-2. |
[25] |
N. Sun, B. Lou and M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var. Partial Differential Equations, 56 (2017), Art. 61, 36 pp.
doi: 10.1007/s00526-017-1165-1. |
[26] |
R. H. Wang, L. Wang and Z. C. Wang,
Free boundary problem of a reaction-diffusion equation with nonlinear convection term, J. Math. Anal. Appl., 467 (2018), 1233-1257.
doi: 10.1016/j.jmaa.2018.07.065. |
[27] |
Y. Zhao and M. X. Wang,
A reaction-diffusion-advection equation with mixed and free boundary conditions, J. Dynam. Differential Equations, 30 (2018), 743-777.
doi: 10.1007/s10884-017-9571-9. |
show all references
References:
[1] |
S. Angenent,
The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79. |
[2] |
G. Bunting, Y. Du and K. Krakowski,
Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
doi: 10.3934/nhm.2012.7.583. |
[3] |
W. Choi and I. Ahn,
Non-uniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, J. Math. Anal. Appl., 479 (2019), 283-314.
doi: 10.1016/j.jmaa.2019.06.027. |
[4] |
W. Ding, R. Peng and L. Wei,
The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779.
doi: 10.1016/j.jde.2017.04.013. |
[5] |
Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405; SIAM J. Math. Anal., 45 (2013), 1995–1996 (erratum).
doi: 10.1137/090771089. |
[6] |
Y. Du and B. Lou,
Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.
doi: 10.4171/JEMS/568. |
[7] |
Y. Du, B. Lou and M. Zhou,
Nonlinear diffusion problems with free boundaries: Convergence, transition speed, and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.
doi: 10.1137/140994848. |
[8] |
Y. Du and H. Matano,
Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279-312.
doi: 10.4171/JEMS/198. |
[9] |
Y. Du, H. Matsuzawa and M. Zhou,
Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.
doi: 10.1137/130908063. |
[10] |
J. S. Guo and C. H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[11] |
Y. Kaneko, K. Oeda and Y. Yamada,
Remarks on spreading and vanishing for free boundary problems of some reaction-diffusion equations, Funkcial. Ekvac., 57 (2014), 449-465.
doi: 10.1619/fesi.57.449. |
[12] |
Y. Kaneko and Y. Yamada,
A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492.
|
[13] |
Y. Kaneko and Y. Yamada,
Spreading speed and profiles of solutions to a free boundary problem with Dirichlet boundary conditions, J. Math. Anal. Appl., 465 (2018), 1159-1175.
doi: 10.1016/j.jmaa.2018.05.056. |
[14] |
Y. Kaneko and H. Matsuzawa,
Spreading and vanishing in a free boundary problem for nonlinear diffusion equations with a given forced moving boundary, J. Differential Equations, 265 (2018), 1000-1043.
doi: 10.1016/j.jde.2018.03.026. |
[15] |
Y. Kaneko, H. Matsuzawa and Y. Yamada, Asymptotic profiles of solutions and propagating terrace for a free boundary problem of reaction-diffusion equation with positive bistable nonlinearity, to appear in SIAM J. Math. Anal. Google Scholar |
[16] |
Y. Kawai and Y. Yamada,
Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.
doi: 10.1016/j.jde.2016.03.017. |
[17] |
C. Lei, H. Matsuzawa, R. Peng and M. Zhou,
Refined estimates for the propagation speed of the transition solution to a free boundary problem with a nonlinearity of combustion type, J. Differential Equations, 265 (2018), 2897-2920.
doi: 10.1016/j.jde.2018.04.053. |
[18] |
X. Liu and B. Lou,
Asymptotic behavior of solutions to diffusion problems with Robin and free boundary conditions, Math. Model. Nat. Phenom., 8 (2013), 18-32.
doi: 10.1051/mmnp/20138303. |
[19] |
X. Liu and B. Lou,
On a reaction-diffusion equation with Robin and free boundary conditions, J. Differential Equations, 259 (2015), 423-453.
doi: 10.1016/j.jde.2015.02.012. |
[20] |
B. Lou,
Convergence in time-periodic quasilinear parabolic equations in one space dimension, J. Differential Equations, 265 (2018), 3952-3969.
doi: 10.1016/j.jde.2018.05.025. |
[21] |
D. Ludwig, D. G. Aronson and H. F. Weinberger,
Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.
doi: 10.1007/BF00276310. |
[22] |
H. Matsuzawa,
A free boundary problem for the Fisher-KPP equation with a given moving boundary, Commun. Pure Appl. Anal., 17 (2018), 1821-1852.
doi: 10.3934/cpaa.2018087. |
[23] |
D. Sattinger,
Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
[24] |
J. Smoller and A. Wasserman,
Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.
doi: 10.1016/0022-0396(81)90077-2. |
[25] |
N. Sun, B. Lou and M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var. Partial Differential Equations, 56 (2017), Art. 61, 36 pp.
doi: 10.1007/s00526-017-1165-1. |
[26] |
R. H. Wang, L. Wang and Z. C. Wang,
Free boundary problem of a reaction-diffusion equation with nonlinear convection term, J. Math. Anal. Appl., 467 (2018), 1233-1257.
doi: 10.1016/j.jmaa.2018.07.065. |
[27] |
Y. Zhao and M. X. Wang,
A reaction-diffusion-advection equation with mixed and free boundary conditions, J. Dynam. Differential Equations, 30 (2018), 743-777.
doi: 10.1007/s10884-017-9571-9. |

[1] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[2] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[3] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[4] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[5] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[6] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[7] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[8] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[9] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[10] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[11] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[12] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[13] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[14] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[15] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[16] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[17] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[18] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[19] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[20] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]