In this paper, we study the global dynamics of a general $ 2\times 2 $ competition models with nonsymmetric nonlocal dispersal operators. Our results indicate that local stability implies global stability provided that one of the diffusion rates is sufficiently small. This paper extends the work in [
Citation: |
[1] |
L. J. S. Allen, E. J. Allen and S. Ponweera, A mathematical model for weed dispersal and control, Bull. Math. Biol., 58 (1996), 815-834.
doi: 10.1007/BF02459485.![]() ![]() |
[2] |
X. Bai and F. Li, Global dynamics of a competition model with nonlocal dispersal II: The full system, J. Differential Equations, 258 (2015), 2655-2685.
doi: 10.1016/j.jde.2014.12.014.![]() ![]() ![]() |
[3] |
X. Bai and F. Li, Classification of global dynamics of competition models with nonlocal dispersals I: Symmetric kernels, Calc. Var. Partial Differential Equations, 57 (2018), Art. 144, 35 pp.
doi: 10.1007/s00526-018-1419-6.![]() ![]() ![]() |
[4] |
M. L. Cain, B. G. Milligan and A. E. Strand, Long-distance seed dispersal in plant populations, Am. J. Bot., 87 (2000), 1217-1227.
doi: 10.2307/2656714.![]() ![]() |
[5] |
R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.
doi: 10.1007/s002850050122.![]() ![]() ![]() |
[6] |
R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley and Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296.![]() ![]() ![]() |
[7] |
J. S. Clark, Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord, Am. Nat., 152 (1998), 204-224.
doi: 10.1086/286162.![]() ![]() |
[8] |
J. S. Clark, C. Fastie, G. Hurtt, S. T. Jackson, C. Johnson, G. A. King, M. Lewis, J. Lynch, S. Pacala, C. Prentice, E. W. Schupp, T. III. Webb and P. Wyckoff, Reid's paradox of rapid plant migration, BioScience, 48 (1998), 13-24.
doi: 10.2307/1313224.![]() ![]() |
[9] |
X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity, I, Comm. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596.![]() ![]() ![]() |
[10] |
G. Hetzer, T. Nguyen and W. Shen, Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.
doi: 10.3934/cpaa.2012.11.1699.![]() ![]() ![]() |
[11] |
V. Huston, S. Martinez, K. Miscaikow and G. T. Vichers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1.![]() ![]() ![]() |
[12] |
M. Kot, M. A. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042.
doi: 10.2307/2265698.![]() ![]() |
[13] |
K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.
doi: 10.1137/120869481.![]() ![]() ![]() |
[14] |
C. T. Lee, M. F. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. V. Leaver, K. McCann, J. Umbanhowar and A. Mogilner, Non-local concepts and models in biology, J. Theor. Biol., 210 (2001), 201-219.
doi: 10.1006/jtbi.2000.2287.![]() ![]() |
[15] |
F. Li, J. Coville and X. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete Contin. Dyn. Syst., 37 (2017), 879-903.
doi: 10.3934/dcds.2017036.![]() ![]() ![]() |
[16] |
F. Li, Y. Lou and Y. Wang, Global dynamics of a competition model with non-local dispersal I: The shadow system, J. Math. Anal. Appl., 412 (2014), 485-497.
doi: 10.1016/j.jmaa.2013.10.071.![]() ![]() ![]() |
[17] |
F. Li, L. Wang and Y. Wang, On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 669-686.
doi: 10.3934/dcdsb.2011.15.669.![]() ![]() ![]() |
[18] |
Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010.![]() ![]() ![]() |
[19] |
F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev, 47 (2005), 749-772.
doi: 10.1137/050636152.![]() ![]() ![]() |
[20] |
J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.
doi: 10.1016/S0025-5564(03)00041-5.![]() ![]() ![]() |
[21] |
F. J. R. Meysman, B. P. Boudreau and J. J. Middelburg, Relations between local, nonlocal, discrete and continuous models of bioturbation, J. Marine Research, 61 (2003), 391-410.
doi: 10.1357/002224003322201241.![]() ![]() |
[22] |
A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.
doi: 10.1007/s002850050158.![]() ![]() ![]() |
[23] |
A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Second edition, Interdisciplinary Applied Mathematics, 14, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-4978-6.![]() ![]() ![]() |
[24] |
H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.
doi: 10.1007/BF00277392.![]() ![]() ![]() |
[25] |
F. M. Schurr, O. Steinitz and R. Nathan, Plant fecundity and seed dispersal in spatially heterogeneous environments: Models, mechanisms and estimation, J. Ecol., 96 (2008), 628-641.
doi: 10.1111/j.1365-2745.2008.01371.x.![]() ![]() |
[26] |
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
doi: 10.1093/biomet/38.1-2.196.![]() ![]() ![]() |