June  2020, 40(6): 3529-3559. doi: 10.3934/dcds.2020040

Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere

Department of Mathematical Sciences, Osaka Prefecture University, Gakuencho, Sakai, 599-8531, Japan

* Corresponding author: Yoshitsugu Kabeya

Dedicated to Professor Wei-Ming Ni on the occasion of his seventieth birthday

Received  February 2019 Revised  May 2019 Published  October 2019

Fund Project: The author is supported in part by JSPS KAKENHI Grant Numbers 15K04965 and 15H03631

We consider the eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a spherical domain. Especially, we investigate the case when the domain is a large zonal one and letting the zone larger so that the zone covers the whole sphere as a limit. We discuss the behavior of eigenvalues according to the rate of expansion of the zone.

Citation: Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040
References:
[1]

C. Bandle, Y. Kabeya and H. Ninomiya, Bifurcating solutions of a nonlinear elliptic Neumann problem on large spherical caps, in Funk. Ekvac.. Google Scholar

[2]

R. Beals and R. Wong, Special Functions: A Graduate Text, Cambridge Studies in Advanced Mathematics, 126. Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511762543.  Google Scholar

[3]

G. Courtois, Spectrum of manifolds with holes, J. Funct. Anal., 134 (1995), 194-221.  doi: 10.1006/jfan.1995.1142.  Google Scholar

[4]

E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1955.  Google Scholar

[5]

Y. KabeyaT. KawakamiA. Kosaka and H. Ninomiya, Eigenvalues of the Laplace-Beltrami operator on a large spherical cap under the Robin problem, Kodai Math. J., 37 (2014), 620-645.  doi: 10.2996/kmj/1414674613.  Google Scholar

[6]

M. L. de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach, Rev. Mat. Complut., 25 (2012), 369-412.  doi: 10.1007/s13163-011-0081-8.  Google Scholar

[7]

H. M. Macdonald, Zeroes of the spherical harmonics $P^m_n(\mu)$ considered as a Function of $n$, Proc. London Math. Soc., 31 (1899), 264-278.  doi: 10.1112/plms/s1-31.1.264.  Google Scholar

[8]

C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, 17. Springer-Verlag, Berlin-New York, 1966.  Google Scholar

[9]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.  Google Scholar

[10]

W.-M. Ni and X. F. Wang, On the first positive Neumann eigenvalue, Discrete. Contin. Dyn. Syst., 17 (2007), 1-19.  doi: 10.3934/dcds.2007.17.1.  Google Scholar

[11]

S. Ozawa, Singular variations of domains and eigenvalues of the Laplacian, Duke Math. J., 48 (1981), 767-778.  doi: 10.1215/S0012-7094-81-04842-0.  Google Scholar

[12]

S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 243-257.   Google Scholar

[13]

S. Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains–the Neumann condition, Osaka J. Math., 22 (1985), 639-655.   Google Scholar

[14]

N. Shimakura, Partial Differential Operators of Elliptic Type, Translations of Mathematical Monographs, 99. American Mathematical Society, Providence, RI, 1992.  Google Scholar

[15]

E. C. Titchmarsh, Eigenfunction expansions associated with partial differential equations, V. Proc. London Math. Soc., 5 (1955), 1-21.  doi: 10.1112/plms/s3-5.1.1.  Google Scholar

[16]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, Second Edition, Clarendon Press, Oxford, 1962.  Google Scholar

show all references

References:
[1]

C. Bandle, Y. Kabeya and H. Ninomiya, Bifurcating solutions of a nonlinear elliptic Neumann problem on large spherical caps, in Funk. Ekvac.. Google Scholar

[2]

R. Beals and R. Wong, Special Functions: A Graduate Text, Cambridge Studies in Advanced Mathematics, 126. Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511762543.  Google Scholar

[3]

G. Courtois, Spectrum of manifolds with holes, J. Funct. Anal., 134 (1995), 194-221.  doi: 10.1006/jfan.1995.1142.  Google Scholar

[4]

E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1955.  Google Scholar

[5]

Y. KabeyaT. KawakamiA. Kosaka and H. Ninomiya, Eigenvalues of the Laplace-Beltrami operator on a large spherical cap under the Robin problem, Kodai Math. J., 37 (2014), 620-645.  doi: 10.2996/kmj/1414674613.  Google Scholar

[6]

M. L. de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach, Rev. Mat. Complut., 25 (2012), 369-412.  doi: 10.1007/s13163-011-0081-8.  Google Scholar

[7]

H. M. Macdonald, Zeroes of the spherical harmonics $P^m_n(\mu)$ considered as a Function of $n$, Proc. London Math. Soc., 31 (1899), 264-278.  doi: 10.1112/plms/s1-31.1.264.  Google Scholar

[8]

C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, 17. Springer-Verlag, Berlin-New York, 1966.  Google Scholar

[9]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.  Google Scholar

[10]

W.-M. Ni and X. F. Wang, On the first positive Neumann eigenvalue, Discrete. Contin. Dyn. Syst., 17 (2007), 1-19.  doi: 10.3934/dcds.2007.17.1.  Google Scholar

[11]

S. Ozawa, Singular variations of domains and eigenvalues of the Laplacian, Duke Math. J., 48 (1981), 767-778.  doi: 10.1215/S0012-7094-81-04842-0.  Google Scholar

[12]

S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 243-257.   Google Scholar

[13]

S. Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains–the Neumann condition, Osaka J. Math., 22 (1985), 639-655.   Google Scholar

[14]

N. Shimakura, Partial Differential Operators of Elliptic Type, Translations of Mathematical Monographs, 99. American Mathematical Society, Providence, RI, 1992.  Google Scholar

[15]

E. C. Titchmarsh, Eigenfunction expansions associated with partial differential equations, V. Proc. London Math. Soc., 5 (1955), 1-21.  doi: 10.1112/plms/s3-5.1.1.  Google Scholar

[16]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, Second Edition, Clarendon Press, Oxford, 1962.  Google Scholar

[1]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[2]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[3]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[4]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[5]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[6]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (122)
  • HTML views (283)
  • Cited by (0)

Other articles
by authors

[Back to Top]