We are concerned with the sign of traveling wave speed in bistable dynamics. This question is related to which species wins the competition in multiple species competition models. It is well-known that the wave speed is unique for traveling wave connecting two stable states. In this paper, we first review some known results on the sign of wave speed in bistable two species competition models. Then we derive rigorously the sign of bistable wave speed for a special three species competition model describing the competition in two different circumstances: (1) two species are weak competitors and one species is a strong competitor; (2) three species are very strong competitors. It is interesting to observe that, under certain conditions on the parameters, two weaker competitors can wipe out the strongest competitor.
Citation: |
[1] |
E. O. Alzahrani, F. A. Davidson and N. Dodds, Travelling waves in near-degenerate bistable competition models, Math. Model. Nat. Phenom., 5 (2010), 13-35.
doi: 10.1051/mmnp/20105502.![]() ![]() ![]() |
[2] |
G. Bunting, Y. H. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.
doi: 10.3934/nhm.2012.7.583.![]() ![]() ![]() |
[3] |
C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitve reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343.
doi: 10.1512/iumj.1984.33.33018.![]() ![]() ![]() |
[4] |
E. C. M. Crooks, E. N. Dancer, D. Hilhorst, M. Mimura and H. Ninomiya, Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions, Nonlinear Analysis: Real World Applications, 5 (2004), 645-665.
doi: 10.1016/j.nonrwa.2004.01.004.![]() ![]() ![]() |
[5] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.
doi: 10.1017/S0956792598003660.![]() ![]() ![]() |
[6] |
Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffsive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089.![]() ![]() ![]() |
[7] |
J. Fang and X.-Q. Zhao, Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc. (JEMS), 17 (2015), 2243-2288.
doi: 10.4171/JEMS/556.![]() ![]() ![]() |
[8] |
R. A. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. Differential Equations, 44 (1982), 343-364.
doi: 10.1016/0022-0396(82)90001-8.![]() ![]() ![]() |
[9] |
L. Girardin and G. Nadin, Travelling waves for diffusive and strongly competitive systems: Relative motility and invasion speed, European J. Appl. Math., 26 (2015), 521-534.
doi: 10.1017/S0956792515000170.![]() ![]() ![]() |
[10] |
J.-S. Guo and Y.-C. Lin, The sign of the wave speed for the Lotka-Volterra competition-diffusion system, Comm. Pure Appl. Anal., 12 (2013), 2083-2090.
doi: 10.3934/cpaa.2013.12.2083.![]() ![]() ![]() |
[11] |
J.-S. Guo, Y. Wang, C.-H. Wu and C.-C. Wu, The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwanese J. Math., 19 (2015), 1805-1829.
doi: 10.11650/tjm.19.2015.5373.![]() ![]() ![]() |
[12] |
J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533.
doi: 10.1016/j.jde.2010.12.004.![]() ![]() ![]() |
[13] |
J.-S. Guo and C.-C. Wu, The existence of traveling wave solutions for a bistable three-component lattice dynamical system, J. Differential Equations, 260 (2016), 1445-1455.
doi: 10.1016/j.jde.2015.09.036.![]() ![]() ![]() |
[14] |
J.-S. Guo, K.-I. Nakamura, T. Ogiwara and C.-C. Wu, Stability and uniqueness of traveling waves for a discrete bistable 3-species competition system, J. Math. Anal. Appl., 472 (2019), 1534-1550.
doi: 10.1016/j.jmaa.2018.12.007.![]() ![]() ![]() |
[15] |
Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.
doi: 10.1137/S0036141093244556.![]() ![]() ![]() |
[16] |
Y. Kan-on, Existence of standing waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 117-133.
doi: 10.1007/BF03167302.![]() ![]() ![]() |
[17] |
Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349.
doi: 10.1007/BF03167252.![]() ![]() ![]() |
[18] |
Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Analysis, 28 (1997), 145-164.
doi: 10.1016/0362-546X(95)00142-I.![]() ![]() ![]() |
[19] |
M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270.
doi: 10.32917/hmj/1206124686.![]() ![]() ![]() |
[20] |
M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rational Mech. Anal., 73 (1980), 69-77.
doi: 10.1007/BF00283257.![]() ![]() ![]() |
[21] |
Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.
doi: 10.1137/080723715.![]() ![]() ![]() |
[22] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140. American Mathematical Society, Providence, RI, 1994.
![]() ![]() |