June  2020, 40(6): 3957-3979. doi: 10.3934/dcds.2020048

The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs

1. 

The George Washington University, Washington, DC 20052, USA

2. 

Alvernia University, Reading, PA 19607, USA

* Corresponding author. Phone: 1 202 994-6791; Fax: 1 202 994-6760

Received  March 2019 Revised  August 2019 Published  October 2019

Fund Project: Xiaofeng Ren is supported in part by NSF grant DMS-1714371

When the Ohta-Kawasaki theory for diblock copolymers is applied to a bounded domain with the Neumann boundary condition, one faces the possibility of micro-domain interfaces intersecting the system boundary. In a particular parameter range, there exist stationary assemblies, stable in some sense, that consist of both perturbed discs in the interior of the system and perturbed half discs attached to the boundary of the system. The circular arcs of the half discs meet the system boundary perpendicularly. The number of the interior discs and the number of the boundary half discs are arbitrarily prescribed and their radii are asymptotically the same. The locations of these discs and half discs are determined by the minimization of a function related to the Green's function of the Laplace operator with the Neumann boundary condition. Numerical calculations based on the theoretical findings show that boundary half discs help lower the energy of stationary assemblies.

Citation: Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048
References:
[1]

E. AcerbiN. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys., 322 (2013), 515-557.  doi: 10.1007/s00220-013-1733-y.  Google Scholar

[2]

F. S. Bates and G. H. Fredrickson, Block copolymers-designer soft materials, Phys. Today, 52 (1999), 32-38.  doi: 10.1063/1.882522.  Google Scholar

[3]

R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer problem: I. Sharp-inteface functional, SIAM J. Math. Anal., 42 (2010), 1334-1370.  doi: 10.1137/090764888.  Google Scholar

[4]

P. C. Fife and D. Hilhorst, The Nishiura-Ohnishi free boundary problem in the 1D case, SIAM J. Math. Anal., 33 (2001), 589-606.  doi: 10.1137/S0036141000372507.  Google Scholar

[5]

D. GoldmanC. B. Muratov and S. Serfaty, The $\Gamma$-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, Arch. Rat. Mech. Anal., 210 (2013), 581-613.  doi: 10.1007/s00205-013-0657-1.  Google Scholar

[6]

C. B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions, Comm. Math. Phys., 299 (2010), 45-87.  doi: 10.1007/s00220-010-1094-8.  Google Scholar

[7]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the microphase separation in diblock copolymers, Physica D, 84 (1995), 31-39.  doi: 10.1016/0167-2789(95)00005-O.  Google Scholar

[8]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.  doi: 10.1021/ma00164a028.  Google Scholar

[9]

X. F. Ren and D. Shoup, The impact of the domain boundary on an inhibitory system: Existence and location of a stationary half disc, Comm. Math. Phys., 340 (2015), 355-412.  doi: 10.1007/s00220-015-2451-4.  Google Scholar

[10]

X. F. Ren and J. C. Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal., 31 (2000), 909-924.  doi: 10.1137/S0036141098348176.  Google Scholar

[11]

X. F. Ren and J. C. Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys., 19 (2007), 879-921.  doi: 10.1142/S0129055X07003139.  Google Scholar

show all references

References:
[1]

E. AcerbiN. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys., 322 (2013), 515-557.  doi: 10.1007/s00220-013-1733-y.  Google Scholar

[2]

F. S. Bates and G. H. Fredrickson, Block copolymers-designer soft materials, Phys. Today, 52 (1999), 32-38.  doi: 10.1063/1.882522.  Google Scholar

[3]

R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer problem: I. Sharp-inteface functional, SIAM J. Math. Anal., 42 (2010), 1334-1370.  doi: 10.1137/090764888.  Google Scholar

[4]

P. C. Fife and D. Hilhorst, The Nishiura-Ohnishi free boundary problem in the 1D case, SIAM J. Math. Anal., 33 (2001), 589-606.  doi: 10.1137/S0036141000372507.  Google Scholar

[5]

D. GoldmanC. B. Muratov and S. Serfaty, The $\Gamma$-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, Arch. Rat. Mech. Anal., 210 (2013), 581-613.  doi: 10.1007/s00205-013-0657-1.  Google Scholar

[6]

C. B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions, Comm. Math. Phys., 299 (2010), 45-87.  doi: 10.1007/s00220-010-1094-8.  Google Scholar

[7]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the microphase separation in diblock copolymers, Physica D, 84 (1995), 31-39.  doi: 10.1016/0167-2789(95)00005-O.  Google Scholar

[8]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.  doi: 10.1021/ma00164a028.  Google Scholar

[9]

X. F. Ren and D. Shoup, The impact of the domain boundary on an inhibitory system: Existence and location of a stationary half disc, Comm. Math. Phys., 340 (2015), 355-412.  doi: 10.1007/s00220-015-2451-4.  Google Scholar

[10]

X. F. Ren and J. C. Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal., 31 (2000), 909-924.  doi: 10.1137/S0036141098348176.  Google Scholar

[11]

X. F. Ren and J. C. Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys., 19 (2007), 879-921.  doi: 10.1142/S0129055X07003139.  Google Scholar

Figure 1.  From the left of the first row with $ n_i = 10 $ and $ n_b = 0 $ to the right of the last row with $ n_i = 0 $ and $ n_b = 20 $, these assemblies, of $ n_i + \frac{n_b}{2} = 10 $, minimize $ F $. Among them, the right one on the first row has the least $ F $ value. Here $ \omega = 0.2 $
Table 1.  Stationary assemblies with $ n_i+\frac{n_b}{2} $ less than or equal to 4
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
1 1 0 -0.0796
1 0 2 -0.0307
1.5 1 1 -0.1365
1.5 0 3 -0.1131
2 2 0 -0.2221
2 1 2 -0.2333
2 0 4 -0.2025
2.5 2 1 -0.3440
2.5 1 3 -0.3374
2.5 0 5 -0.2922
3 3 0 -0.4619
3 2 2 -0.4706
3 1 4 -0.4421
3 0 6 -0.3780
3.5 3 1 -0.5955
3.5 2 3 -0.5890
3.5 1 5 -0.5707
3.5 0 7 -0.4573
4 4 0 -0.7301
4 3 2 -0.7287
4 2 4 -0.6783
4 1 6 -0.6963
4 0 8 -0.5280
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
1 1 0 -0.0796
1 0 2 -0.0307
1.5 1 1 -0.1365
1.5 0 3 -0.1131
2 2 0 -0.2221
2 1 2 -0.2333
2 0 4 -0.2025
2.5 2 1 -0.3440
2.5 1 3 -0.3374
2.5 0 5 -0.2922
3 3 0 -0.4619
3 2 2 -0.4706
3 1 4 -0.4421
3 0 6 -0.3780
3.5 3 1 -0.5955
3.5 2 3 -0.5890
3.5 1 5 -0.5707
3.5 0 7 -0.4573
4 4 0 -0.7301
4 3 2 -0.7287
4 2 4 -0.6783
4 1 6 -0.6963
4 0 8 -0.5280
Table 2.  Stationary assemblies with $ n_i+\frac{n_b}{2} = 10 $
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
10 10 0 -2.5781
10 9 2 -2.5819
10 8 4 -2.5885
10 7 6 -2.5793
10 6 8 -2.5644
10 5 10 -2.5433
10 4 12 -2.4791
10 3 14 -2.2864
10 2 16 -1.9222
10 1 18 -1.3549
10 0 20 -0.3911
$ n_i + \frac{n_b}{2} $ $ n_i $ $ n_b $ Minimum $ F $
10 10 0 -2.5781
10 9 2 -2.5819
10 8 4 -2.5885
10 7 6 -2.5793
10 6 8 -2.5644
10 5 10 -2.5433
10 4 12 -2.4791
10 3 14 -2.2864
10 2 16 -1.9222
10 1 18 -1.3549
10 0 20 -0.3911
[1]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[2]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[3]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[4]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[5]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[8]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[9]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[10]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[11]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[12]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[13]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[15]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[16]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[17]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[18]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[19]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[20]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (105)
  • HTML views (248)
  • Cited by (0)

Other articles
by authors

[Back to Top]