June  2020, 40(6): 3357-3374. doi: 10.3934/dcds.2020049

Spike solutions for a mass conservation reaction-diffusion system

1. 

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

2. 

Department of Mathematics, National Changhua University of Education, Changhua, Taiwan

* Corresponding author: Shin-Ichiro Ei

-dedicated to 70th birthday of Prof. Wei-Ming Ni-

Received  March 2019 Revised  July 2019 Published  October 2019

This article deals with a mass conservation reaction-diffusion system. As a model for studying cell polarity, we are interested in the existence of spike solutions and some properties related to its dynamics. Variational arguments will be employed to investigate the existence questions. The profile of a spike solution looks like a standing pulse. In addition, the motion of such spikes in heterogeneous media will be derived.

Citation: Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 394-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

C.-N. Chen and Y. S. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Rational Mech. Anal., 206 (2012), 741-777.  doi: 10.1007/s00205-012-0542-3.  Google Scholar

[3]

C.-N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 54 (2015), 1-45.  doi: 10.1007/s00526-014-0776-z.  Google Scholar

[4]

C.-N. ChenY. S. Choi and N. Fusco, The $\Gamma$-limit of traveling waves in the FitzHugh-Nagumo system, J. Differential Equations, 267 (2019), 1805-1835.  doi: 10.1016/j.jde.2019.02.023.  Google Scholar

[5]

C.-N. ChenY.-S. Choi and X. F. Ren, Bubbles and droplets in a singular limit of the FitzHugh-Nagumo system, Interfaces and Free Boundaries, 20 (2018), 165-210.  doi: 10.4171/IFB/400.  Google Scholar

[6]

C.-N. ChenY.-S. ChoiY. Y. Hu and X. F. Ren, Higher dimensional bubble profiles in a singular limit of the FitzHugh-Nagumo system, SIAM J. Math. Anal., 50 (2018), 5072-5095.  doi: 10.1137/17M1144933.  Google Scholar

[7]

C.-N. ChenS.-I. Ei and S.-Y. Tzeng, Heterogeneity induced effects for pulse dynamics in FitzHugh-Nagumo type systems, Physica D: Nonlinear Phenomena, 382/383 (2018), 22-32.  doi: 10.1016/j.physd.2018.07.001.  Google Scholar

[8]

C.-N. Chen and X. J. Hu, Maslov index for homoclinic orbits of Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéarie, 24 (2007), 589-603.  doi: 10.1016/j.anihpc.2006.06.002.  Google Scholar

[9]

C.-N. Chen and X. J. Hu, Stability criteria for reaction-diffusion systems with skew-gradient structure, Communications in Partial Differential Equations, 33 (2008), 189-208.  doi: 10.1080/03605300601188755.  Google Scholar

[10]

C.-N. Chen and X. J. Hu, Stability analysis for standing pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 49 (2014), 827-845.  doi: 10.1007/s00526-013-0601-0.  Google Scholar

[11]

C.-N. Chen and K. Tanaka, A variational approach for standing waves of FitzHugh-Nagumo type systems, J. Differential Equations, 257 (2014), 109-144.  doi: 10.1016/j.jde.2014.03.013.  Google Scholar

[12]

C.-N. Chen and S.-Y. Tzeng, Periodic solutions and their connecting orbits of Hamiltonian systems, J. Differential Equations, 177 (2001), 121-145.  doi: 10.1006/jdeq.2000.3996.  Google Scholar

[13]

A. DoelmanP. van Heijster and T. J. Kaper, Pulse dynamics in a three-component system: Existence analysis, J. Dynam. Differential Equations, 21 (2009), 73-115.  doi: 10.1007/s10884-008-9125-2.  Google Scholar

[14]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.  Google Scholar

[15]

S.-I. Ei and J. C. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimension, Japan J. Ind. Appl. Math., 19 (2002), 181-226.  doi: 10.1007/BF03167453.  Google Scholar

[16]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass-conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203(R). doi: 10.1103/PhysRevE.75.015203.  Google Scholar

[17]

S. Jimbo and Y. Morita, Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations, 255 (2013), 1657-1683.  doi: 10.1016/j.jde.2013.05.021.  Google Scholar

[18]

J. Keener and J. Sneyd, Mathematical Physiology. Vol. I: Cellular Physiology, Second edition, Interdisciplinary Applied Mathematics, 8/I. Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7.  Google Scholar

[19]

M. KuwamuraS. Seirin-Lee and S.-I. Ei, Dynamics of localized unimodal patterns in reaction-diffusion systems for cell polarization by extracellular signaling, SIAM J. APPL. MATH., 78 (2018), 3238-3257.  doi: 10.1137/18M1163749.  Google Scholar

[20]

E. Latos and T. Suzuki, Global dynamics of a reaction-diffusion system with mass conservation, J. Math. Anal. Appl., 411 (2014), 107-118.  doi: 10.1016/j.jmaa.2013.09.039.  Google Scholar

[21]

Y. Morita and T. Ogawa, Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23 (2010), 1387-1411.  doi: 10.1088/0951-7715/23/6/007.  Google Scholar

[22]

W.-M. Ni and J. C. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[23]

M. OtsujiS. IshiharaC. CoK. KaibuchiA. Mochizuki and S. Kuroda, A mass conserved reaction-diffusion system captures properties of cell polarity, PLoS Comput. Biol., 3 (2007), 1040-1054.  doi: 10.1371/journal.pcbi.0030108.  Google Scholar

[24]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[25]

C. Reinecke and G. Sweers, A positive solution on ${\mathbb R}^n$ to a equations of FitzHugh-Nagumo type, J. Differential Equations, 153 (1999), 292-312.  doi: 10.1006/jdeq.1998.3560.  Google Scholar

[26]

T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.  Google Scholar

[27]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Localized patterns in a three-component FitzHugh-Nagumo model revisited via an action functional, J. Dynam. Differential Equations, 30 (2018), 521-555.  doi: 10.1007/s10884-016-9557-z.  Google Scholar

[28]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Pinned solutions in a heterogeneous three-component FitzHugh-Nagumo model, J. Dyn. Differ. Equ., 31 (2019), 153-203.  doi: 10.1007/s10884-018-9694-7.  Google Scholar

[29]

E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 394-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

C.-N. Chen and Y. S. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Rational Mech. Anal., 206 (2012), 741-777.  doi: 10.1007/s00205-012-0542-3.  Google Scholar

[3]

C.-N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 54 (2015), 1-45.  doi: 10.1007/s00526-014-0776-z.  Google Scholar

[4]

C.-N. ChenY. S. Choi and N. Fusco, The $\Gamma$-limit of traveling waves in the FitzHugh-Nagumo system, J. Differential Equations, 267 (2019), 1805-1835.  doi: 10.1016/j.jde.2019.02.023.  Google Scholar

[5]

C.-N. ChenY.-S. Choi and X. F. Ren, Bubbles and droplets in a singular limit of the FitzHugh-Nagumo system, Interfaces and Free Boundaries, 20 (2018), 165-210.  doi: 10.4171/IFB/400.  Google Scholar

[6]

C.-N. ChenY.-S. ChoiY. Y. Hu and X. F. Ren, Higher dimensional bubble profiles in a singular limit of the FitzHugh-Nagumo system, SIAM J. Math. Anal., 50 (2018), 5072-5095.  doi: 10.1137/17M1144933.  Google Scholar

[7]

C.-N. ChenS.-I. Ei and S.-Y. Tzeng, Heterogeneity induced effects for pulse dynamics in FitzHugh-Nagumo type systems, Physica D: Nonlinear Phenomena, 382/383 (2018), 22-32.  doi: 10.1016/j.physd.2018.07.001.  Google Scholar

[8]

C.-N. Chen and X. J. Hu, Maslov index for homoclinic orbits of Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéarie, 24 (2007), 589-603.  doi: 10.1016/j.anihpc.2006.06.002.  Google Scholar

[9]

C.-N. Chen and X. J. Hu, Stability criteria for reaction-diffusion systems with skew-gradient structure, Communications in Partial Differential Equations, 33 (2008), 189-208.  doi: 10.1080/03605300601188755.  Google Scholar

[10]

C.-N. Chen and X. J. Hu, Stability analysis for standing pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 49 (2014), 827-845.  doi: 10.1007/s00526-013-0601-0.  Google Scholar

[11]

C.-N. Chen and K. Tanaka, A variational approach for standing waves of FitzHugh-Nagumo type systems, J. Differential Equations, 257 (2014), 109-144.  doi: 10.1016/j.jde.2014.03.013.  Google Scholar

[12]

C.-N. Chen and S.-Y. Tzeng, Periodic solutions and their connecting orbits of Hamiltonian systems, J. Differential Equations, 177 (2001), 121-145.  doi: 10.1006/jdeq.2000.3996.  Google Scholar

[13]

A. DoelmanP. van Heijster and T. J. Kaper, Pulse dynamics in a three-component system: Existence analysis, J. Dynam. Differential Equations, 21 (2009), 73-115.  doi: 10.1007/s10884-008-9125-2.  Google Scholar

[14]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.  Google Scholar

[15]

S.-I. Ei and J. C. Wei, Dynamics of metastable localized patterns and its application to the interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimension, Japan J. Ind. Appl. Math., 19 (2002), 181-226.  doi: 10.1007/BF03167453.  Google Scholar

[16]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass-conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203(R). doi: 10.1103/PhysRevE.75.015203.  Google Scholar

[17]

S. Jimbo and Y. Morita, Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations, 255 (2013), 1657-1683.  doi: 10.1016/j.jde.2013.05.021.  Google Scholar

[18]

J. Keener and J. Sneyd, Mathematical Physiology. Vol. I: Cellular Physiology, Second edition, Interdisciplinary Applied Mathematics, 8/I. Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7.  Google Scholar

[19]

M. KuwamuraS. Seirin-Lee and S.-I. Ei, Dynamics of localized unimodal patterns in reaction-diffusion systems for cell polarization by extracellular signaling, SIAM J. APPL. MATH., 78 (2018), 3238-3257.  doi: 10.1137/18M1163749.  Google Scholar

[20]

E. Latos and T. Suzuki, Global dynamics of a reaction-diffusion system with mass conservation, J. Math. Anal. Appl., 411 (2014), 107-118.  doi: 10.1016/j.jmaa.2013.09.039.  Google Scholar

[21]

Y. Morita and T. Ogawa, Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23 (2010), 1387-1411.  doi: 10.1088/0951-7715/23/6/007.  Google Scholar

[22]

W.-M. Ni and J. C. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[23]

M. OtsujiS. IshiharaC. CoK. KaibuchiA. Mochizuki and S. Kuroda, A mass conserved reaction-diffusion system captures properties of cell polarity, PLoS Comput. Biol., 3 (2007), 1040-1054.  doi: 10.1371/journal.pcbi.0030108.  Google Scholar

[24]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[25]

C. Reinecke and G. Sweers, A positive solution on ${\mathbb R}^n$ to a equations of FitzHugh-Nagumo type, J. Differential Equations, 153 (1999), 292-312.  doi: 10.1006/jdeq.1998.3560.  Google Scholar

[26]

T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.  Google Scholar

[27]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Localized patterns in a three-component FitzHugh-Nagumo model revisited via an action functional, J. Dynam. Differential Equations, 30 (2018), 521-555.  doi: 10.1007/s10884-016-9557-z.  Google Scholar

[28]

P. van HeijsterC.-N. ChenY. Nishiura and T. Teramoto, Pinned solutions in a heterogeneous three-component FitzHugh-Nagumo model, J. Dyn. Differ. Equ., 31 (2019), 153-203.  doi: 10.1007/s10884-018-9694-7.  Google Scholar

[29]

E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.  Google Scholar

[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[3]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[4]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[5]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[6]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[7]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[8]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[9]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[10]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[11]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[14]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[15]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[18]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[19]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[20]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (271)
  • HTML views (273)
  • Cited by (1)

Other articles
by authors

[Back to Top]