We establish spreading properties of the Lotka-Volterra competition-diffusion system. When the initial data vanish on a right half-line, we derive the exact spreading speeds and prove the convergence to homogeneous equilibrium states between successive invasion fronts. Our method is inspired by the geometric optics approach for Fisher-KPP equation due to Freidlin, Evans and Souganidis. Our main result settles an open question raised by Shigesada et al. in 1997, and shows that one of the species spreads to the right with a nonlocally pulled front.
Citation: |
[1] |
Y. Achdou, G. Barles, H. Ishii and G. L. Litvinov, Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Fondazione CIME/CIME Foundation Subseries, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2013.
doi: 10.1007/978-3-642-36433-4.![]() ![]() ![]() |
[2] |
A. Alhasanat and C. H. Ou, On a conjecture raised by Yuzo Hosono, J. Dynam. Differential Equations, 31 (2019), 287-304.
doi: 10.1007/s10884-018-9651-5.![]() ![]() ![]() |
[3] |
A. Alhasanat and C. H. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Differential Equations, 266 (2019), 7357-7378.
doi: 10.1016/j.jde.2018.12.003.![]() ![]() ![]() |
[4] |
G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J., 61 (1990), 835-858.
doi: 10.1215/S0012-7094-90-06132-0.![]() ![]() ![]() |
[5] |
G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér., 21 (1987), 557-579.
doi: 10.1051/m2an/1987210405571.![]() ![]() ![]() |
[6] |
G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim., 31 (1993), 439-469.
doi: 10.1137/0331021.![]() ![]() ![]() |
[7] |
H. Berestycki and J. Fang, Forced waves of the Fisher-KPP equation in a shifting environment, J. Differential Equations, 264 (2018), 2157-2183.
doi: 10.1016/j.jde.2017.10.016.![]() ![]() ![]() |
[8] |
H. Berestycki and G. Nadin, Spreading speeds for one-dimensional monostable reaction-diffusion equations, J. Math. Phys., 53 (2012), 115619, 23 pp.
doi: 10.1063/1.4764932.![]() ![]() ![]() |
[9] |
C. Carrère, Spreading speeds for a two-species competition-diffusion system, J. Differential Equations, 264 (2018), 2133-2156.
doi: 10.1016/j.jde.2017.10.017.![]() ![]() ![]() |
[10] |
M. B. Davis, Quaternary history and stability of forest communities, Forest Succession: Concepts and Applications, Springer-Verlag, New York, (1981), 132–153.
doi: 10.1007/978-1-4612-5950-3_10.![]() ![]() |
[11] |
Y. H. Du and C.-H. Wu, Spreading with two speeds and mass segregation in a diffusive competition system with free boundaries, Calc. Var. Partial Differential Equations, 57 (2018), Art. 52, 36 pp.
doi: 10.1007/s00526-018-1339-5.![]() ![]() ![]() |
[12] |
A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), Art. 137, 34 pp.
doi: 10.1007/s00526-019-1576-2.![]() ![]() ![]() |
[13] |
L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equation, Indiana Univ. Math. J., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040.![]() ![]() ![]() |
[14] |
L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., 38 (1989), 141-172.
doi: 10.1512/iumj.1989.38.38007.![]() ![]() ![]() |
[15] |
J. Fang, Y. J. Lou and J. H. Wu, Can pathogen spread keep pace with its host invasion?, SIAM J. Appl. Math., 74 (2016), 1633-1657.
doi: 10.1137/15M1029564.![]() ![]() ![]() |
[16] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. Hum. Genet., 7 (1937), 355-369.
doi: 10.1111/j.1469-1809.1937.tb02153.x.![]() ![]() |
[17] |
M. Freidlin, Limit theorems for large deviations and reaction-diffusion equation, Ann. Probab., 13 (1985), 639-675.
doi: 10.1214/aop/1176992901.![]() ![]() ![]() |
[18] |
L. Girardin and K.-Y. Lam, Invasion of an empty habitat by two competitors: Spreading properties of monostable two-species competition-diffusion systems, P. Lond. Math. Soc., 119 (2019), 1279-1335.
doi: 10.1112/plms.12270.![]() ![]() ![]() |
[19] |
J.-S. Guo and C.-H. Wu, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.
doi: 10.1088/0951-7715/28/1/1.![]() ![]() ![]() |
[20] |
F. Hamel and G. Nadin, Spreading properties and complex dynamics for monostable reaction-diffusion equations, Comm. Partial Differential Equations, 37 (2012), 511-537.
doi: 10.1080/03605302.2011.647198.![]() ![]() ![]() |
[21] |
M. Holzer and A. Scheel, Accelerated fronts in a two stage invasion process, SIAM J. Math. Anal., 46 (2014), 397-427.
doi: 10.1137/120887746.![]() ![]() ![]() |
[22] |
X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213.
doi: 10.1016/j.nonrwa.2007.07.007.![]() ![]() ![]() |
[23] |
W. Z. Huang, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dynam. Differential Equations, 22 (2010), 285-297.
doi: 10.1007/s10884-010-9159-0.![]() ![]() ![]() |
[24] |
W. Z. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model, J. Differential Equations, 251 (2011), 1549-1561.
doi: 10.1016/j.jde.2011.05.012.![]() ![]() ![]() |
[25] |
M. Iida, R. Lui and H. Ninomiya, Stacked fronts for cooperative systems with equal diffusion coefficients, SIAM J. Math. Anal., 43 (2011), 1369-1389.
doi: 10.1137/100792846.![]() ![]() ![]() |
[26] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de léquation de la diffusion avec croissance de la quantité de matiére et son application à un probléme biologique, Bull. Univ. Moscow, Ser. Internat., Sec. A, 1 (1937), 1-26.
![]() |
[27] |
M. A. Lewis, B. T. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.
doi: 10.1007/s002850200144.![]() ![]() ![]() |
[28] |
B. T. Li, Multiple invasion speeds in a two-species integro-difference competition model, J. Math. Biol., 76 (2018), 1975-2009.
doi: 10.1007/s00285-017-1200-z.![]() ![]() ![]() |
[29] |
B. T. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, J. Math. Bios., 196 (2005), 82-98.
doi: 10.1016/j.mbs.2005.03.008.![]() ![]() ![]() |
[30] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
[31] |
G. Lin and W.-T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, European J. Appl. Math., 23 (2012), 669-689.
doi: 10.1017/S0956792512000198.![]() ![]() ![]() |
[32] |
S. Y. Liu, H. M. Huang and M. X. Wang, Asymptotic spreading of a diffusive competition model with different free boundaries, J. Differential Equations, 266 (2019), 4769-4799.
doi: 10.1016/j.jde.2018.10.009.![]() ![]() ![]() |
[33] |
A. J. Majda and P. E. Souganidis, Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity, 7 (1994), 1-30.
doi: 10.1088/0951-7715/7/1/001.![]() ![]() ![]() |
[34] |
V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media, Phys. Rev. E, 68 (2003), 041105, 11 pp.
doi: 10.1103/PhysRevE.68.041105.![]() ![]() ![]() |
[35] |
L. Roques, Y. Hosono, O. Bonnefon and T. Boivin, The effect of competition on the neutral intraspecific diversity of invasive species, J. Math. Biol., 71 (2015), 465-489.
doi: 10.1007/s00285-014-0825-4.![]() ![]() ![]() |
[36] |
N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997.
![]() |
[37] |
P. E. Souganidis, Front propagation: Theory and applications, Viscosity solutions and applications, Lecture Notes in Math., Fond. CIME/CIME Found. Subser., Springer, Berlin, 1660 (1997), 186-242.
doi: 10.1007/BFb0094298.![]() ![]() ![]() |
[38] |
M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rational Mech. Anal., 73 (1980), 69-77.
doi: 10.1007/BF00283257.![]() ![]() ![]() |
[39] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140. American Mathematical Society, Providence, RI, 1994.
![]() ![]() |
[40] |
M. X. Wang and Y. Zhang, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467.
doi: 10.1016/j.na.2017.01.005.![]() ![]() ![]() |
[41] |
M. X. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differential Equations, 264 (2018), 3527-3558.
doi: 10.1016/j.jde.2017.11.027.![]() ![]() ![]() |
[42] |
C.-H. Wu, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015), 873-897.
doi: 10.1016/j.jde.2015.02.021.![]() ![]() ![]() |
[43] |
J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230.
doi: 10.1137/S0036144599364296.![]() ![]() ![]() |
Asymptotic behaviors of the solutions to (1) with
The graphs of