# American Institute of Mathematical Sciences

June  2020, 40(6): 3327-3355. doi: 10.3934/dcds.2020052

## Type Ⅱ finite time blow-up for the energy critical heat equation in $\mathbb{R}^4$

 1 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom 2 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

* Corresponding author: Manuel del Pino

Dedicated to Professor Wei-Ming Ni on the occasion of his 70th birthday.

Received  April 2019 Revised  May 2019 Published  October 2019

Fund Project: The first author has been supported by a UK Royal Society Research Professorship and Grant PAI AFB-170001, Chile. The second author has been partly supported by Fondecyt grant 1160135, Chile. The research of the third author is partially supported by NSERC of Canada

We consider the Cauchy problem for the energy critical heat equation
 \left\{ \begin{aligned} u_t & = \Delta u + u^3 {\quad\hbox{in } }\ \mathbb R^4 \times (0, T), \\ u(\cdot, 0) & = u_0 {\quad\hbox{in } } \mathbb R^4. \end{aligned}\right. ~~~~~~~~~~~~~~~~~~~~~~~(1)
We find that for given points
 $q_1, q_2, \ldots, q_k$
and any sufficiently small
 $T>0$
there is an initial condition
 $u_0$
such that the solution
 $u(x, t)$
of (1) blows up at exactly those
 $k$
points with a type Ⅱ rate, namely larger than
 $(T-t)^{-\frac 12}$
. In fact
 $\|u(\cdot, t)\|_\infty \sim (T-t)^{-1}\log^2(T-t)$
. The blow-up profile around each point is of bubbling type, in the form of sharply scaled Aubin-Talenti bubbles.
Citation: Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $\mathbb{R}^4$. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052
##### References:
 [1] C. Collot, Nonradial type Ⅱ blow up for the energy-supercritical semilinear heat equation, Anal. PDE, 10 (2017), 127-252.  doi: 10.2140/apde.2017.10.127. [2] C. Collot, F. Merle and P. Raphael, On strongly anisotropic type Ⅱ blow up, preprint, arXiv: 1709.04941. [3] C. Collot, P. Raphaël and J. Szeftel, On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation, Mem. Amer. Math. Soc. 260. (2019), arXiv: 1605.07337. doi: 10.1090/memo/1255. [4] C. Cortázar, M. del Pino and M. Musso, Green's function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS), to appear. [5] P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., 738 (2018), 1-71.  doi: 10.1515/crelle-2015-0048. [6] J. Dávila, M. del Pino and J. Wei, Singularity formation for the two-dimensional harmonic map flow into S2, Invent. Math. arXiv: 1702.05801. [7] J. Dávila, M. del Pino, C. Pesce and J. Wei, Blow-up for the 3-dimensional axially symmetric harmonic map flow into $\mathbb{S}^2$, Discrete Contin. Dyn. Syst., to appear. [8] M. del Pino, M. Musso and J. Wei, Infinite time blow-up for the 3-dimensional energy critical heat equation, Anal. PDE, to appear. [9] M. del Pino, M. Musso and J. Wei, Geometry driven Type Ⅱ higher dimensional blow-up for the critical heat equation, preprint, arXiv: 1710.11461. [10] M. del Pino, M. Musso and J. C. Wei, Type Ⅱ blow-up in the 5-dimensional energy critical heat equation, Acta Mathematica Sinica (Engl. Ser.), 35 (2019), 1027-1042.  doi: 10.1007/s10114-019-8341-5. [11] T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type Ⅱ blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), 13 (2011), 533-599.  doi: 10.4171/JEMS/261. [12] C. J. Fan, Log-log blow up solutions blow up at exactly m points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 1429-1482.  doi: 10.1016/j.anihpc.2016.11.002. [13] S. Filippas, M. A. Herrero and J. J. L. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2957-2982.  doi: 10.1098/rspa.2000.0648. [14] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+a}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. [15] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304. [16] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001. [17] Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514.  doi: 10.1512/iumj.2004.53.2401. [18] M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris Ser. I Math., 319 (1994), 141-145. [19] M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, Unpublished. [20] J. Jendrej, Construction of type Ⅱ blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., 272 (2017), 866-917.  doi: 10.1016/j.jfa.2016.10.019. [21] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  doi: 10.1007/BF00250508. [22] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6. [23] J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the $H^{1}( \mathbb R^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53.  doi: 10.1215/00127094-2009-005. [24] H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044. [25] H. Matano and F. Merle, Classification of type Ⅰ and type Ⅱ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064.  doi: 10.1016/j.jfa.2008.05.021. [26] H. Matano and F. Merle, Threshold and generic type Ⅰ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748.  doi: 10.1016/j.jfa.2011.02.025. [27] F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Commun. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303. [28] F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u+|u|^{p-1}u$, Duke Math. J., 86 (1997), 143-195.  doi: 10.1215/S0012-7094-97-08605-1. [29] N. Mizoguchi, Nonexistence of type Ⅱ blowup solution for a semilinear heat equation, J. Differ. Equations, 250 (2011), 26-32.  doi: 10.1016/j.jde.2010.10.012. [30] P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007. [31] P. Raphaël and R. Schweyer, Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Comm. Pure Appl. Math., 66 (2013), 414-480.  doi: 10.1002/cpa.21435. [32] R. Schweyer, Type Ⅱ blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., 263 (2012), 3922-3983.  doi: 10.1016/j.jfa.2012.09.015.

show all references

Dedicated to Professor Wei-Ming Ni on the occasion of his 70th birthday.

##### References:
 [1] C. Collot, Nonradial type Ⅱ blow up for the energy-supercritical semilinear heat equation, Anal. PDE, 10 (2017), 127-252.  doi: 10.2140/apde.2017.10.127. [2] C. Collot, F. Merle and P. Raphael, On strongly anisotropic type Ⅱ blow up, preprint, arXiv: 1709.04941. [3] C. Collot, P. Raphaël and J. Szeftel, On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation, Mem. Amer. Math. Soc. 260. (2019), arXiv: 1605.07337. doi: 10.1090/memo/1255. [4] C. Cortázar, M. del Pino and M. Musso, Green's function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS), to appear. [5] P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., 738 (2018), 1-71.  doi: 10.1515/crelle-2015-0048. [6] J. Dávila, M. del Pino and J. Wei, Singularity formation for the two-dimensional harmonic map flow into S2, Invent. Math. arXiv: 1702.05801. [7] J. Dávila, M. del Pino, C. Pesce and J. Wei, Blow-up for the 3-dimensional axially symmetric harmonic map flow into $\mathbb{S}^2$, Discrete Contin. Dyn. Syst., to appear. [8] M. del Pino, M. Musso and J. Wei, Infinite time blow-up for the 3-dimensional energy critical heat equation, Anal. PDE, to appear. [9] M. del Pino, M. Musso and J. Wei, Geometry driven Type Ⅱ higher dimensional blow-up for the critical heat equation, preprint, arXiv: 1710.11461. [10] M. del Pino, M. Musso and J. C. Wei, Type Ⅱ blow-up in the 5-dimensional energy critical heat equation, Acta Mathematica Sinica (Engl. Ser.), 35 (2019), 1027-1042.  doi: 10.1007/s10114-019-8341-5. [11] T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type Ⅱ blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS), 13 (2011), 533-599.  doi: 10.4171/JEMS/261. [12] C. J. Fan, Log-log blow up solutions blow up at exactly m points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 1429-1482.  doi: 10.1016/j.anihpc.2016.11.002. [13] S. Filippas, M. A. Herrero and J. J. L. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2957-2982.  doi: 10.1098/rspa.2000.0648. [14] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+a}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. [15] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304. [16] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001. [17] Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514.  doi: 10.1512/iumj.2004.53.2401. [18] M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d'equations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris Ser. I Math., 319 (1994), 141-145. [19] M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, Unpublished. [20] J. Jendrej, Construction of type Ⅱ blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., 272 (2017), 866-917.  doi: 10.1016/j.jfa.2016.10.019. [21] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  doi: 10.1007/BF00250508. [22] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6. [23] J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the $H^{1}( \mathbb R^3)$ critical focusing semilinear wave equation, Duke Math. J., 147 (2009), 1-53.  doi: 10.1215/00127094-2009-005. [24] H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044. [25] H. Matano and F. Merle, Classification of type Ⅰ and type Ⅱ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064.  doi: 10.1016/j.jfa.2008.05.021. [26] H. Matano and F. Merle, Threshold and generic type Ⅰ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748.  doi: 10.1016/j.jfa.2011.02.025. [27] F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Commun. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303. [28] F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u+|u|^{p-1}u$, Duke Math. J., 86 (1997), 143-195.  doi: 10.1215/S0012-7094-97-08605-1. [29] N. Mizoguchi, Nonexistence of type Ⅱ blowup solution for a semilinear heat equation, J. Differ. Equations, 250 (2011), 26-32.  doi: 10.1016/j.jde.2010.10.012. [30] P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007. [31] P. Raphaël and R. Schweyer, Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Comm. Pure Appl. Math., 66 (2013), 414-480.  doi: 10.1002/cpa.21435. [32] R. Schweyer, Type Ⅱ blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., 263 (2012), 3922-3983.  doi: 10.1016/j.jfa.2012.09.015.
 [1] Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 [2] Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 [3] Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060 [4] Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 [5] Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 [6] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [7] Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 [8] Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 [9] Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093 [10] Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 [11] Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086 [12] José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 [13] Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585 [14] Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435 [15] Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169 [16] Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 [17] Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941 [18] Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 [19] Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 [20] Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

2021 Impact Factor: 1.588