-
Previous Article
Evolution equations involving nonlinear truncated Laplacian operators
- DCDS Home
- This Issue
-
Next Article
Preface: DCDS-A special issue to honor Wei-Ming Ni's 70th birthday
Bifurcation from infinity with applications to reaction-diffusion systems
1. | Nakano Junior and Senior High School Attached to Meiji University, 3-3-4 Higashi-Nakano, Nakano-ku, 164-0003, Japan |
2. | Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan |
3. | Department of Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan |
4. | School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan |
The bifurcation method is one of powerful tools to study the existence of a continuous branch of solutions. However without further analysis, the local theory only ensures the existence of solutions within a small neighborhood of bifurcation point. In this paper we extend the theory of bifurcation from infinity, initiated by Rabinowitz [
References:
[1] |
C.-N. Chen,
Uniqueness and bifurcation for solutions of nonlinear Sturm-Liouville eigenvalue problems, Arch. Rational. Mech. Anal., 111 (1990), 51-85.
doi: 10.1007/BF00375700. |
[2] |
C.-N. Chen,
Some existence and bifurcation results for solutions of nonlinear Sturm-Liouville eigenvalue problems, Math. Zeitschrift, 208 (1991), 177-192.
doi: 10.1007/BF02571519. |
[3] |
C.-N. Chen, A survey of nonlinear Sturm-Liouville equations, Sturm-Liouville Theory, Birkhäuser, Basel, (2005), 201–216.
doi: 10.1007/3-7643-7359-8_9. |
[4] |
M. Fila and K. Ninomiya,
Reaction versus diffusion: Blow-up induced and inhibited by diffusivity, Russian Mathematical Surveys, 60 (2005), 1217-1235.
doi: 10.1070/RM2005v060n06ABEH004289. |
[5] |
N. Mizoguchi, H. Ninomiya and E. Yanagida,
Diffusion-induced blowup in a nonlinear parabolic system, J. Dynam. Differential Equations, 10 (1998), 619-638.
doi: 10.1023/A:1022633226140. |
[6] |
J. Morgan,
On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, 3 (1990), 973-978.
|
[7] |
J. D. Murray, Mathematical Biology II : Spatial Models and Biomedical Applications, Third edition, Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. |
[8] |
H. Ninomiya and H. F. Weinberger,
Pest control may make the pest population explode, Z. Angew. Math. Phys., 54 (2003), 869-873.
doi: 10.1007/s00033-003-3210-5. |
[9] |
H. Ninomiya and H. F. Weinberger,
On p-homogeneous systems of differential equations and their linear perturbations, Applicable Analysis, 85 (2006), 225-247.
doi: 10.1080/0036810500277066. |
[10] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, Journal of functional analysis, 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[11] |
P. H. Rabinowitz,
On bifurcation from infinity, J. Differential Equations, 14 (1973), 462-475.
doi: 10.1016/0022-0396(73)90061-2. |
[12] |
S. Rosenblat and S. H. Davis,
Bifurcation from infinity, SIAM Journal on Applied Mathematics, 37 (1979), 1-19.
doi: 10.1137/0137001. |
[13] |
C. A. Stuart,
Solutions of large norm for non-linear Sturm-Liouville problems, Quarterly Journal of Mathematics, 24 (1973), 129-139.
doi: 10.1093/qmath/24.1.129. |
[14] |
A. M. Turing,
The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
show all references
Dedicated to Professor Wei-Ming Ni on the occasion of his 70th birthday
References:
[1] |
C.-N. Chen,
Uniqueness and bifurcation for solutions of nonlinear Sturm-Liouville eigenvalue problems, Arch. Rational. Mech. Anal., 111 (1990), 51-85.
doi: 10.1007/BF00375700. |
[2] |
C.-N. Chen,
Some existence and bifurcation results for solutions of nonlinear Sturm-Liouville eigenvalue problems, Math. Zeitschrift, 208 (1991), 177-192.
doi: 10.1007/BF02571519. |
[3] |
C.-N. Chen, A survey of nonlinear Sturm-Liouville equations, Sturm-Liouville Theory, Birkhäuser, Basel, (2005), 201–216.
doi: 10.1007/3-7643-7359-8_9. |
[4] |
M. Fila and K. Ninomiya,
Reaction versus diffusion: Blow-up induced and inhibited by diffusivity, Russian Mathematical Surveys, 60 (2005), 1217-1235.
doi: 10.1070/RM2005v060n06ABEH004289. |
[5] |
N. Mizoguchi, H. Ninomiya and E. Yanagida,
Diffusion-induced blowup in a nonlinear parabolic system, J. Dynam. Differential Equations, 10 (1998), 619-638.
doi: 10.1023/A:1022633226140. |
[6] |
J. Morgan,
On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, 3 (1990), 973-978.
|
[7] |
J. D. Murray, Mathematical Biology II : Spatial Models and Biomedical Applications, Third edition, Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. |
[8] |
H. Ninomiya and H. F. Weinberger,
Pest control may make the pest population explode, Z. Angew. Math. Phys., 54 (2003), 869-873.
doi: 10.1007/s00033-003-3210-5. |
[9] |
H. Ninomiya and H. F. Weinberger,
On p-homogeneous systems of differential equations and their linear perturbations, Applicable Analysis, 85 (2006), 225-247.
doi: 10.1080/0036810500277066. |
[10] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, Journal of functional analysis, 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[11] |
P. H. Rabinowitz,
On bifurcation from infinity, J. Differential Equations, 14 (1973), 462-475.
doi: 10.1016/0022-0396(73)90061-2. |
[12] |
S. Rosenblat and S. H. Davis,
Bifurcation from infinity, SIAM Journal on Applied Mathematics, 37 (1979), 1-19.
doi: 10.1137/0137001. |
[13] |
C. A. Stuart,
Solutions of large norm for non-linear Sturm-Liouville problems, Quarterly Journal of Mathematics, 24 (1973), 129-139.
doi: 10.1093/qmath/24.1.129. |
[14] |
A. M. Turing,
The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[1] |
Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523 |
[2] |
Yuxiao Guo, Ben Niu. Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6005-6024. doi: 10.3934/dcdsb.2019118 |
[3] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[4] |
Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054 |
[5] |
Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107 |
[6] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[7] |
Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304 |
[8] |
A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65 |
[9] |
Georg Hetzer. Global existence for a functional reaction-diffusion problem from climate modeling. Conference Publications, 2011, 2011 (Special) : 660-671. doi: 10.3934/proc.2011.2011.660 |
[10] |
Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49 |
[11] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[12] |
Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21 |
[13] |
Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815 |
[14] |
C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872 |
[15] |
Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191 |
[16] |
Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415 |
[17] |
Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179 |
[18] |
Wei Feng, Xin Lu. Global periodicity in a class of reaction-diffusion systems with time delays. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 69-78. doi: 10.3934/dcdsb.2003.3.69 |
[19] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891 |
[20] |
Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]