The bifurcation method is one of powerful tools to study the existence of a continuous branch of solutions. However without further analysis, the local theory only ensures the existence of solutions within a small neighborhood of bifurcation point. In this paper we extend the theory of bifurcation from infinity, initiated by Rabinowitz [
Citation: |
[1] |
C.-N. Chen, Uniqueness and bifurcation for solutions of nonlinear Sturm-Liouville eigenvalue problems, Arch. Rational. Mech. Anal., 111 (1990), 51-85.
doi: 10.1007/BF00375700.![]() ![]() ![]() |
[2] |
C.-N. Chen, Some existence and bifurcation results for solutions of nonlinear Sturm-Liouville eigenvalue problems, Math. Zeitschrift, 208 (1991), 177-192.
doi: 10.1007/BF02571519.![]() ![]() ![]() |
[3] |
C.-N. Chen, A survey of nonlinear Sturm-Liouville equations, Sturm-Liouville Theory, Birkhäuser, Basel, (2005), 201–216.
doi: 10.1007/3-7643-7359-8_9.![]() ![]() ![]() |
[4] |
M. Fila and K. Ninomiya, Reaction versus diffusion: Blow-up induced and inhibited by diffusivity, Russian Mathematical Surveys, 60 (2005), 1217-1235.
doi: 10.1070/RM2005v060n06ABEH004289.![]() ![]() ![]() |
[5] |
N. Mizoguchi, H. Ninomiya and E. Yanagida, Diffusion-induced blowup in a nonlinear parabolic system, J. Dynam. Differential Equations, 10 (1998), 619-638.
doi: 10.1023/A:1022633226140.![]() ![]() ![]() |
[6] |
J. Morgan, On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, 3 (1990), 973-978.
![]() ![]() |
[7] |
J. D. Murray, Mathematical Biology II : Spatial Models and Biomedical Applications, Third edition, Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.
![]() ![]() |
[8] |
H. Ninomiya and H. F. Weinberger, Pest control may make the pest population explode, Z. Angew. Math. Phys., 54 (2003), 869-873.
doi: 10.1007/s00033-003-3210-5.![]() ![]() ![]() |
[9] |
H. Ninomiya and H. F. Weinberger, On p-homogeneous systems of differential equations and their linear perturbations, Applicable Analysis, 85 (2006), 225-247.
doi: 10.1080/0036810500277066.![]() ![]() ![]() |
[10] |
P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of functional analysis, 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9.![]() ![]() ![]() |
[11] |
P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations, 14 (1973), 462-475.
doi: 10.1016/0022-0396(73)90061-2.![]() ![]() ![]() |
[12] |
S. Rosenblat and S. H. Davis, Bifurcation from infinity, SIAM Journal on Applied Mathematics, 37 (1979), 1-19.
doi: 10.1137/0137001.![]() ![]() ![]() |
[13] |
C. A. Stuart, Solutions of large norm for non-linear Sturm-Liouville problems, Quarterly Journal of Mathematics, 24 (1973), 129-139.
doi: 10.1093/qmath/24.1.129.![]() ![]() ![]() |
[14] |
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012.![]() ![]() ![]() |