June  2020, 40(6): 3031-3055. doi: 10.3934/dcds.2020053

Bifurcation from infinity with applications to reaction-diffusion systems

1. 

Nakano Junior and Senior High School Attached to Meiji University, 3-3-4 Higashi-Nakano, Nakano-ku, 164-0003, Japan

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan

3. 

Department of Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

4. 

School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan

* Corresponding author: Kousuke Kuto

Dedicated to Professor Wei-Ming Ni on the occasion of his 70th birthday

Received  April 2019 Revised  May 2019 Published  October 2019

Fund Project: The second author was supported in part by the Ministry of Science and Technology of Taiwan, grant 105-2115-M-007-009-MY3. The third author was partially supported by JSPS KAKENHI Grant-in-Aid Grant Numbers 15K04948 and 19K03581. The fourth author would like to thank the Mathematics Division of NCTS (Taipei Office) for the warm hospitality and the support of the fourth author's visit to Taiwan. The fourth author was partially supported by JSPS KAKENHI Grant Numbers JP26287024, JP15K04963, JP16K13778 and JP16KT0022

The bifurcation method is one of powerful tools to study the existence of a continuous branch of solutions. However without further analysis, the local theory only ensures the existence of solutions within a small neighborhood of bifurcation point. In this paper we extend the theory of bifurcation from infinity, initiated by Rabinowitz [11] and Stuart [13], to find solutions of elliptic partial differential equations with large amplitude. For the applications to the reaction-diffusion systems, we are able to relax the conditions to obtain the bifurcation from infinity for the following nonlinear terms; (ⅰ) nonlinear terms satisfying conditions similar to [11] (all directions), (ⅱ) nonlinear terms satisfying similar conditions only on the strip domain along the direction determined by the eigenfunction, (ⅲ) $ p $-homogeneous nonlinear terms with degenerate conditions.

Citation: Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053
References:
[1]

C.-N. Chen, Uniqueness and bifurcation for solutions of nonlinear Sturm-Liouville eigenvalue problems, Arch. Rational. Mech. Anal., 111 (1990), 51-85.  doi: 10.1007/BF00375700.  Google Scholar

[2]

C.-N. Chen, Some existence and bifurcation results for solutions of nonlinear Sturm-Liouville eigenvalue problems, Math. Zeitschrift, 208 (1991), 177-192.  doi: 10.1007/BF02571519.  Google Scholar

[3]

C.-N. Chen, A survey of nonlinear Sturm-Liouville equations, Sturm-Liouville Theory, Birkhäuser, Basel, (2005), 201–216. doi: 10.1007/3-7643-7359-8_9.  Google Scholar

[4]

M. Fila and K. Ninomiya, Reaction versus diffusion: Blow-up induced and inhibited by diffusivity, Russian Mathematical Surveys, 60 (2005), 1217-1235.  doi: 10.1070/RM2005v060n06ABEH004289.  Google Scholar

[5]

N. MizoguchiH. Ninomiya and E. Yanagida, Diffusion-induced blowup in a nonlinear parabolic system, J. Dynam. Differential Equations, 10 (1998), 619-638.  doi: 10.1023/A:1022633226140.  Google Scholar

[6]

J. Morgan, On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, 3 (1990), 973-978.   Google Scholar

[7]

J. D. Murray, Mathematical Biology II : Spatial Models and Biomedical Applications, Third edition, Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.  Google Scholar

[8]

H. Ninomiya and H. F. Weinberger, Pest control may make the pest population explode, Z. Angew. Math. Phys., 54 (2003), 869-873.  doi: 10.1007/s00033-003-3210-5.  Google Scholar

[9]

H. Ninomiya and H. F. Weinberger, On p-homogeneous systems of differential equations and their linear perturbations, Applicable Analysis, 85 (2006), 225-247.  doi: 10.1080/0036810500277066.  Google Scholar

[10]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of functional analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[11]

P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations, 14 (1973), 462-475.  doi: 10.1016/0022-0396(73)90061-2.  Google Scholar

[12]

S. Rosenblat and S. H. Davis, Bifurcation from infinity, SIAM Journal on Applied Mathematics, 37 (1979), 1-19.  doi: 10.1137/0137001.  Google Scholar

[13]

C. A. Stuart, Solutions of large norm for non-linear Sturm-Liouville problems, Quarterly Journal of Mathematics, 24 (1973), 129-139.  doi: 10.1093/qmath/24.1.129.  Google Scholar

[14]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

show all references

References:
[1]

C.-N. Chen, Uniqueness and bifurcation for solutions of nonlinear Sturm-Liouville eigenvalue problems, Arch. Rational. Mech. Anal., 111 (1990), 51-85.  doi: 10.1007/BF00375700.  Google Scholar

[2]

C.-N. Chen, Some existence and bifurcation results for solutions of nonlinear Sturm-Liouville eigenvalue problems, Math. Zeitschrift, 208 (1991), 177-192.  doi: 10.1007/BF02571519.  Google Scholar

[3]

C.-N. Chen, A survey of nonlinear Sturm-Liouville equations, Sturm-Liouville Theory, Birkhäuser, Basel, (2005), 201–216. doi: 10.1007/3-7643-7359-8_9.  Google Scholar

[4]

M. Fila and K. Ninomiya, Reaction versus diffusion: Blow-up induced and inhibited by diffusivity, Russian Mathematical Surveys, 60 (2005), 1217-1235.  doi: 10.1070/RM2005v060n06ABEH004289.  Google Scholar

[5]

N. MizoguchiH. Ninomiya and E. Yanagida, Diffusion-induced blowup in a nonlinear parabolic system, J. Dynam. Differential Equations, 10 (1998), 619-638.  doi: 10.1023/A:1022633226140.  Google Scholar

[6]

J. Morgan, On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, 3 (1990), 973-978.   Google Scholar

[7]

J. D. Murray, Mathematical Biology II : Spatial Models and Biomedical Applications, Third edition, Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.  Google Scholar

[8]

H. Ninomiya and H. F. Weinberger, Pest control may make the pest population explode, Z. Angew. Math. Phys., 54 (2003), 869-873.  doi: 10.1007/s00033-003-3210-5.  Google Scholar

[9]

H. Ninomiya and H. F. Weinberger, On p-homogeneous systems of differential equations and their linear perturbations, Applicable Analysis, 85 (2006), 225-247.  doi: 10.1080/0036810500277066.  Google Scholar

[10]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of functional analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[11]

P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations, 14 (1973), 462-475.  doi: 10.1016/0022-0396(73)90061-2.  Google Scholar

[12]

S. Rosenblat and S. H. Davis, Bifurcation from infinity, SIAM Journal on Applied Mathematics, 37 (1979), 1-19.  doi: 10.1137/0137001.  Google Scholar

[13]

C. A. Stuart, Solutions of large norm for non-linear Sturm-Liouville problems, Quarterly Journal of Mathematics, 24 (1973), 129-139.  doi: 10.1093/qmath/24.1.129.  Google Scholar

[14]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[5]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[6]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[7]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[8]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[9]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[10]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[11]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[14]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[15]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[16]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[17]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[18]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[19]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[20]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (317)
  • HTML views (271)
  • Cited by (0)

[Back to Top]