We develop a thermodynamic formalism for a class of diffeomorphisms of a torus that are "almost-Anosov". In particular, we use a Young tower construction to prove the existence and uniqueness of equilibrium states for a collection of non-Hölder continuous geometric potentials over almost Anosov systems with an indifferent fixed point, as well as prove exponential decay of correlations and the central limit theorem for these equilibrium measures.
Citation: |
[1] |
J. Alves and R. Leplaideur, SRB measures for almost axiom A diffeomorphisms, Ergod. Th. & Dynam. Sys., 36 (2016), 2015-2043.
doi: 10.1017/etds.2015.4.![]() ![]() ![]() |
[2] |
A. Gura, (Russian) [http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mzm&paperid=7623&option_lang=eng Separating diffeomorphisms of the torus], Mat. Zamekti, 18 (1975), 41–49.
![]() |
[3] |
H. Hu, Conditions for the existence of SBR measures of "almost Anosov" diffeomorphisms, Trans. Amer. Math. Soc., 352 (2000), 2331-2367.
doi: 10.1090/S0002-9947-99-02477-0.![]() ![]() ![]() |
[4] |
H. Hu and L. S. Young, Nonexistence of SBR measures for some diffeomorphisms that are "almost Anosov", Ergod. Th. & Dynam. Sys., 15 (1995), 67-76.
doi: 10.1017/S0143385700008245.![]() ![]() ![]() |
[5] |
A. Katok, Bernoulli diffeomorphisms on surfaces, Ann. of Math. (2), 110 (1979), 529–547.
doi: 10.2307/1971237.![]() ![]() ![]() |
[6] |
F. Ledrappier and L. S. Young, The metric entropy of diffeomorphisms, Bull. of the Amer. Math. Soc. (N.S.), 11 (1984), 343-346.
doi: 10.1090/S0273-0979-1984-15299-6.![]() ![]() ![]() |
[7] |
Y. Pesin, S. Senti and K. Zhang, Thermodynamics of the Katok map, Ergodic Theory Dynam. Systems, 39 (2019), 764-794.
doi: 10.1017/etds.2017.35.![]() ![]() ![]() |
[8] |
Y. Pesin, S. Senti and K. Zhang, Thermodynamics of towers of hyperbolic type, Trans. Amer. Math. Soc., 368 (2016), 8519-8552.
doi: 10.1090/tran/6599.![]() ![]() ![]() |
[9] |
F. Rodriguez-Hertz, M. A. Rodriguez-Hertz, A. Tahzibi and R. Ures, Uniqueness of SRB measures for transitive diffeomorphisms on surfaces, Commun. Math. Phys., 306 (2011), 35-49.
doi: 10.1007/s00220-011-1275-0.![]() ![]() ![]() |