
- Previous Article
- DCDS Home
- This Issue
-
Next Article
Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions
Some Liouville-type results for stable solutions involving the mean curvature operator: The radial case
1. | LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France |
2. | Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain |
$ - {{\rm{div}}}{\left(\frac{\nabla u}{\sqrt{1+\left\vert{\nabla u}\right\vert^2}}\right)} = f(u)\mbox{ in } \mathbb R^N, $ |
$ f $ |
$ N \ge 2 $ |
References:
[1] |
X. Cabré and A. Capella,
On the stability of radial solutions of semilinear elliptic equations in all of $\Bbb R^n$, C. R. Math. Acad. Sci. Paris, 338 (2004), 769-774.
doi: 10.1016/j.crma.2004.03.013. |
[2] |
X. Cabré, A. Capella and M. Sanchón,
Regularity of radial minimizers of reaction equations involving the $p$-Laplacian, Calc. Var. Partial Differential Equations, 34 (2009), 475-494.
doi: 10.1007/s00526-008-0192-3. |
[3] |
X. Cabré and M. Sanchón,
Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian, Commun. Pure Appl. Anal., 6 (2007), 43-67.
doi: 10.3934/cpaa.2007.6.43. |
[4] |
D. Castorina, P. Esposito and B. Sciunzi,
Low dimensional instability for semilinear and quasilinear problems in $\Bbb R^N$, Commun. Pure Appl. Anal., 8 (2009), 1779-1793.
doi: 10.3934/cpaa.2009.8.1779. |
[5] |
L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci,
Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119.
doi: 10.1016/j.anihpc.2008.06.001. |
[6] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman and Hall/CRC, 2011.
doi: 10.1201/b10802. |
[7] |
A. Farina,
Liouville-type results for solutions of $-\Delta u = \vert u\vert ^{p-1}u$ on unbounded domains of $\mathbb{R}^N$, C. R. Math. Acad. Sci. Paris, 341 (2005), 415-418.
doi: 10.1016/j.crma.2005.07.006. |
[8] |
A. Farina,
Liouville-type theorems for elliptic problems, Handbook of Differential Equations: Stationary Partial Differential Equations, 4 (2007), 61-116.
doi: 10.1016/S1874-5733(07)80005-2. |
[9] |
A. Farina,
On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb{R}^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[10] |
A. Farina,
Stable solutions of $-\Delta u = e^u$ on $\mathbb{R}^N$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.
doi: 10.1016/j.crma.2007.05.021. |
[11] |
A. Farina and L. Dupaigne,
Stable solutions of $ -\Delta u = f(u)$ in $ \mathbb R^N$, Journal of the European Mathematical Society, 12 (2010), 855-882.
doi: 10.4171/JEMS/217. |
[12] |
A. Farina, B. Sciunzi and E. Valdinoci,
Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.
|
[13] |
N. Ghoussoub and A. Moradifam,
Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.
doi: 10.1007/s00208-010-0510-x. |
[14] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, , Monographs in Mathematics, 80. Birkhauser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[15] |
M. A. Navarro and S. Villegas,
Semi-stable radial solutions of $p$-Laplace equations in $\Bbb{R}^N$, Nonlinear Anal., 149 (2017), 111-116.
doi: 10.1016/j.na.2016.10.004. |
[16] |
M. A. Navarro and S. Villegas,
Sharp estimates of radial minimizers of $p$–Laplace equations, Proc. Amer. Math. Soc., 145 (2017), 2931-2941.
doi: 10.1090/proc/13454. |
[17] |
S. Villegas,
Asymptotic behavior of stable radial solutions of semilinear elliptic equations in $\mathbb{R}^N$, J. Math. Pures Appl. (9), 88 (2007), 241-250.
doi: 10.1016/j.matpur.2007.06.004. |
show all references
References:
[1] |
X. Cabré and A. Capella,
On the stability of radial solutions of semilinear elliptic equations in all of $\Bbb R^n$, C. R. Math. Acad. Sci. Paris, 338 (2004), 769-774.
doi: 10.1016/j.crma.2004.03.013. |
[2] |
X. Cabré, A. Capella and M. Sanchón,
Regularity of radial minimizers of reaction equations involving the $p$-Laplacian, Calc. Var. Partial Differential Equations, 34 (2009), 475-494.
doi: 10.1007/s00526-008-0192-3. |
[3] |
X. Cabré and M. Sanchón,
Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian, Commun. Pure Appl. Anal., 6 (2007), 43-67.
doi: 10.3934/cpaa.2007.6.43. |
[4] |
D. Castorina, P. Esposito and B. Sciunzi,
Low dimensional instability for semilinear and quasilinear problems in $\Bbb R^N$, Commun. Pure Appl. Anal., 8 (2009), 1779-1793.
doi: 10.3934/cpaa.2009.8.1779. |
[5] |
L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci,
Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119.
doi: 10.1016/j.anihpc.2008.06.001. |
[6] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman and Hall/CRC, 2011.
doi: 10.1201/b10802. |
[7] |
A. Farina,
Liouville-type results for solutions of $-\Delta u = \vert u\vert ^{p-1}u$ on unbounded domains of $\mathbb{R}^N$, C. R. Math. Acad. Sci. Paris, 341 (2005), 415-418.
doi: 10.1016/j.crma.2005.07.006. |
[8] |
A. Farina,
Liouville-type theorems for elliptic problems, Handbook of Differential Equations: Stationary Partial Differential Equations, 4 (2007), 61-116.
doi: 10.1016/S1874-5733(07)80005-2. |
[9] |
A. Farina,
On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb{R}^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[10] |
A. Farina,
Stable solutions of $-\Delta u = e^u$ on $\mathbb{R}^N$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.
doi: 10.1016/j.crma.2007.05.021. |
[11] |
A. Farina and L. Dupaigne,
Stable solutions of $ -\Delta u = f(u)$ in $ \mathbb R^N$, Journal of the European Mathematical Society, 12 (2010), 855-882.
doi: 10.4171/JEMS/217. |
[12] |
A. Farina, B. Sciunzi and E. Valdinoci,
Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.
|
[13] |
N. Ghoussoub and A. Moradifam,
Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.
doi: 10.1007/s00208-010-0510-x. |
[14] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, , Monographs in Mathematics, 80. Birkhauser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[15] |
M. A. Navarro and S. Villegas,
Semi-stable radial solutions of $p$-Laplace equations in $\Bbb{R}^N$, Nonlinear Anal., 149 (2017), 111-116.
doi: 10.1016/j.na.2016.10.004. |
[16] |
M. A. Navarro and S. Villegas,
Sharp estimates of radial minimizers of $p$–Laplace equations, Proc. Amer. Math. Soc., 145 (2017), 2931-2941.
doi: 10.1090/proc/13454. |
[17] |
S. Villegas,
Asymptotic behavior of stable radial solutions of semilinear elliptic equations in $\mathbb{R}^N$, J. Math. Pures Appl. (9), 88 (2007), 241-250.
doi: 10.1016/j.matpur.2007.06.004. |
[1] |
Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187 |
[2] |
Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206 |
[3] |
Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025 |
[4] |
Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665 |
[5] |
Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97 |
[6] |
Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399 |
[7] |
Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033 |
[8] |
Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869 |
[9] |
Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks and Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967 |
[10] |
Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885 |
[11] |
Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251 |
[12] |
Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166 |
[13] |
Haiyan Wang. Positive radial solutions for quasilinear equations in the annulus. Conference Publications, 2005, 2005 (Special) : 878-885. doi: 10.3934/proc.2005.2005.878 |
[14] |
Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317 |
[15] |
Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707 |
[16] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, 2021, 29 (3) : 2359-2373. doi: 10.3934/era.2020119 |
[17] |
João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure and Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571 |
[18] |
Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099 |
[19] |
Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377 |
[20] |
Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]