-
Previous Article
Permanence and universal classification of discrete-time competitive systems via the carrying simplex
- DCDS Home
- This Issue
-
Next Article
Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation
Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrödinger system
CMLS, École Polytechnique, CNRS, 91128 Palaiseau, France |
$ \begin{equation*} \begin{cases} \text{i}\partial_t u + \partial_x^2 u +(|u|^2 + \omega |v|^2) u = 0\\ \text{i}\partial_t v + \partial_x^2 v+ (|v|^2 + \omega |u|^2) v = 0 \end{cases}\quad (t,x)\in \mathbb{R}\times \mathbb{R}, \end{equation*} $ |
$ 0 < \omega < 1 $ |
$ \lim\limits_{t\to +\infty}\left\| \begin{pmatrix} u(t) \\ v(t)\end{pmatrix} - \begin{pmatrix} e^{ \text{i} t}Q (\cdot - \frac{1}{2} \log (\Omega t) - \frac{1}{4} \log \log t) \\[4pt] e^{ \text{i} t}Q (\cdot + \frac{1}{2} \log (\Omega t) + \frac{1}{4} \log \log t)\end{pmatrix}\right\|_{H^1\times H^1} = 0 $ |
$ Q = \sqrt{2} $ |
$ Q'' - Q + Q^3 = 0 $ |
$ \Omega>0 $ |
$ \omega = 0 $ |
$ \omega = 1 $ |
$ 2 $ |
$ 0<c<1 $ |
$ 0<\omega < \frac 12 c(c+1) $ |
$ \lim\limits_{t\to +\infty}\left\| \begin{pmatrix}u(t) \\ v(t)\end{pmatrix} - \begin{pmatrix}e^{ \text{i} c^2 t}Q_c (\cdot - \frac{1}{(c+1)c} \log (\Omega_c t) )\\[4pt] e^{ \text{i} t} Q (\cdot + \frac{1}{c+1} \log (\Omega_c t))\end{pmatrix} \right\|_{H^1\times H^1} = 0 $ |
$ Q_c(x) = cQ(cx) $ |
$ \Omega_c>0 $ |
$ \omega = 0 $ |
$ \omega = 1 $ |
References:
[1] |
M. J. Ablowitz, B. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511546709.![]() ![]() ![]() |
[2] |
L. Bergé,
Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370.
doi: 10.1016/S0370-1573(97)00092-6. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[4] |
V. Combet and Y. Martel,
Construction of multi-bubble solutions for the critical GKDV equation, SIAM J. Math. Anal., 50 (2018), 3715-3790.
doi: 10.1137/17M1140595. |
[5] |
R. Côte, Y. Martel and F. Merle,
Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.
doi: 10.4171/RMI/636. |
[6] |
F. Delebecque, S. Le Coz and R. M. Weishäupl,
Multi-speed solitary waves of nonlinear Schrödinger systems: Theoretical and numerical analysis, Commun. Math. Sci., 14 (2016), 1599-1624.
doi: 10.4310/CMS.2016.v14.n6.a7. |
[7] |
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Classics in Mathematics, Springer, Berlin, 2007. |
[8] |
J. Ginibre and G. Velo,
On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis, 32 (1979), 1-32.
doi: 10.1016/0022-1236(79)90076-4. |
[9] |
K. A. Gorshkov and L. A. Ostrovsky,
Interactions of solitons in non-integrable systems: Direct perturbation method and applications, Physica 3D, 1 & 2 (1981), 428-438.
|
[10] |
M. Grillakis, J. Shatah and W. A. Strauss,
Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[11] |
I. Ianni and S. Le Coz,
Multi-speed solitary wave solutions for nonlinear Schrödinger system, J. Lond. Math. Soc. (2), 89 (2014), 623-639.
doi: 10.1112/jlms/jdt083. |
[12] |
J. Jendrej, Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations, preprint, arXiv: 1802.06294 |
[13] |
V. I. Karpman and V. V. Solov'ev,
A perturbational approach to the two-soliton system, Phys. D, 3 (1981), 487-502.
doi: 10.1016/0167-2789(81)90035-X. |
[14] |
J. Krieger, Y. Martel and P. Raphaël,
Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math., 62 (2009), 1501-1550.
doi: 10.1002/cpa.20292. |
[15] |
S. V. Manakov,
On the theory of two-dimensional stationary self-focusing of electromagnetic waves, J. Experimental Theoretical Physics, 38 (1974), 248-253.
|
[16] |
Y. Martel,
Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.
doi: 10.1353/ajm.2005.0033. |
[17] |
Y. Martel and F. Merle,
Multi-solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.
doi: 10.1016/j.anihpc.2006.01.001. |
[18] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability and asymptotic stability in the energy space of the sum of $N$ solitons for the subcritical gKdV equations, Commun. Math. Phys., 231 (2002), 347-373.
doi: 10.1007/s00220-002-0723-2. |
[19] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133 (2006), 405-466.
doi: 10.1215/S0012-7094-06-13331-8. |
[20] |
Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 701–737.
doi: 10.24033/asens.2364. |
[21] |
F. Merle,
Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.
doi: 10.1007/BF02096981. |
[22] |
T. V. Nguyễn,
Existence of multi-solitary waves with logarithmic relative distances for the NLS equations, C. R. Math. Acad. Sci. Paris, 357 (2019), 13-58.
doi: 10.1016/j.crma.2018.11.012. |
[23] |
T. V. Nguyễn,
Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, 30 (2017), 4614-4648.
doi: 10.1088/1361-6544/aa8cab. |
[24] |
E. Olmedilla,
Multiple pole solutions of the nonlinear Schrödinger equation, Phys. D, 25 (1987), 330-346.
doi: 10.1016/0167-2789(87)90107-2. |
[25] |
P. Raphaël, Stability and blow up for the nonlinear Schrödinger equation, in Lecture Notes for the Clay Summer School on Evolution Equations, ETH, Zurich, 2008. |
[26] |
P. Raphaël and J. Szeftel,
Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), 471-546.
doi: 10.1090/S0894-0347-2010-00688-1. |
[27] |
E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Clarendon Press, Oxford, 1946.
![]() ![]() |
[28] |
M. I. Weinstein,
Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.
doi: 10.1007/BF01208265. |
[29] |
M. I. Weinstein,
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[30] |
M. I. Weinstein,
Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[31] |
J. Yang, Suppression of Manakov-soliton interference in optical fibers, Rev. E., 65 (2002).
doi: 10.1103/PhysRevE.65.036606. |
[32] |
J. Yang, Nonlinear Waves in Integrable and Non-Integrable Systems, Mathematical Modeling and Computation, 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898719680. |
[33] |
T. Zakharov and A. B. Shabat,
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69.
|
show all references
References:
[1] |
M. J. Ablowitz, B. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511546709.![]() ![]() ![]() |
[2] |
L. Bergé,
Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370.
doi: 10.1016/S0370-1573(97)00092-6. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[4] |
V. Combet and Y. Martel,
Construction of multi-bubble solutions for the critical GKDV equation, SIAM J. Math. Anal., 50 (2018), 3715-3790.
doi: 10.1137/17M1140595. |
[5] |
R. Côte, Y. Martel and F. Merle,
Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.
doi: 10.4171/RMI/636. |
[6] |
F. Delebecque, S. Le Coz and R. M. Weishäupl,
Multi-speed solitary waves of nonlinear Schrödinger systems: Theoretical and numerical analysis, Commun. Math. Sci., 14 (2016), 1599-1624.
doi: 10.4310/CMS.2016.v14.n6.a7. |
[7] |
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Classics in Mathematics, Springer, Berlin, 2007. |
[8] |
J. Ginibre and G. Velo,
On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis, 32 (1979), 1-32.
doi: 10.1016/0022-1236(79)90076-4. |
[9] |
K. A. Gorshkov and L. A. Ostrovsky,
Interactions of solitons in non-integrable systems: Direct perturbation method and applications, Physica 3D, 1 & 2 (1981), 428-438.
|
[10] |
M. Grillakis, J. Shatah and W. A. Strauss,
Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[11] |
I. Ianni and S. Le Coz,
Multi-speed solitary wave solutions for nonlinear Schrödinger system, J. Lond. Math. Soc. (2), 89 (2014), 623-639.
doi: 10.1112/jlms/jdt083. |
[12] |
J. Jendrej, Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations, preprint, arXiv: 1802.06294 |
[13] |
V. I. Karpman and V. V. Solov'ev,
A perturbational approach to the two-soliton system, Phys. D, 3 (1981), 487-502.
doi: 10.1016/0167-2789(81)90035-X. |
[14] |
J. Krieger, Y. Martel and P. Raphaël,
Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math., 62 (2009), 1501-1550.
doi: 10.1002/cpa.20292. |
[15] |
S. V. Manakov,
On the theory of two-dimensional stationary self-focusing of electromagnetic waves, J. Experimental Theoretical Physics, 38 (1974), 248-253.
|
[16] |
Y. Martel,
Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.
doi: 10.1353/ajm.2005.0033. |
[17] |
Y. Martel and F. Merle,
Multi-solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.
doi: 10.1016/j.anihpc.2006.01.001. |
[18] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability and asymptotic stability in the energy space of the sum of $N$ solitons for the subcritical gKdV equations, Commun. Math. Phys., 231 (2002), 347-373.
doi: 10.1007/s00220-002-0723-2. |
[19] |
Y. Martel, F. Merle and T.-P. Tsai,
Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations, Duke Math. J., 133 (2006), 405-466.
doi: 10.1215/S0012-7094-06-13331-8. |
[20] |
Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 701–737.
doi: 10.24033/asens.2364. |
[21] |
F. Merle,
Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.
doi: 10.1007/BF02096981. |
[22] |
T. V. Nguyễn,
Existence of multi-solitary waves with logarithmic relative distances for the NLS equations, C. R. Math. Acad. Sci. Paris, 357 (2019), 13-58.
doi: 10.1016/j.crma.2018.11.012. |
[23] |
T. V. Nguyễn,
Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, 30 (2017), 4614-4648.
doi: 10.1088/1361-6544/aa8cab. |
[24] |
E. Olmedilla,
Multiple pole solutions of the nonlinear Schrödinger equation, Phys. D, 25 (1987), 330-346.
doi: 10.1016/0167-2789(87)90107-2. |
[25] |
P. Raphaël, Stability and blow up for the nonlinear Schrödinger equation, in Lecture Notes for the Clay Summer School on Evolution Equations, ETH, Zurich, 2008. |
[26] |
P. Raphaël and J. Szeftel,
Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), 471-546.
doi: 10.1090/S0894-0347-2010-00688-1. |
[27] |
E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Clarendon Press, Oxford, 1946.
![]() ![]() |
[28] |
M. I. Weinstein,
Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.
doi: 10.1007/BF01208265. |
[29] |
M. I. Weinstein,
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[30] |
M. I. Weinstein,
Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[31] |
J. Yang, Suppression of Manakov-soliton interference in optical fibers, Rev. E., 65 (2002).
doi: 10.1103/PhysRevE.65.036606. |
[32] |
J. Yang, Nonlinear Waves in Integrable and Non-Integrable Systems, Mathematical Modeling and Computation, 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898719680. |
[33] |
T. Zakharov and A. B. Shabat,
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69.
|
[1] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[2] |
Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013 |
[3] |
Yuan Li, Shou-Fu Tian. Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Communications on Pure and Applied Analysis, 2022, 21 (1) : 293-313. doi: 10.3934/cpaa.2021178 |
[4] |
Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541 |
[5] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[6] |
W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708 |
[7] |
Anna Maria Candela, Caterina Sportelli. Soliton solutions for quasilinear modified Schrödinger equations in applied sciences. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022121 |
[8] |
Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140 |
[9] |
Haibo Cui, Junpei Gao, Lei Yao. Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29 (2) : 2063-2075. doi: 10.3934/era.2020105 |
[10] |
Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040 |
[11] |
Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 |
[12] |
Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 |
[13] |
Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533 |
[14] |
Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955 |
[15] |
Baowei Feng. On the decay rates for a one-dimensional porous elasticity system with past history. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2905-2921. doi: 10.3934/cpaa.2019130 |
[16] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations and Control Theory, 2022, 11 (1) : 283-300. doi: 10.3934/eect.2021003 |
[17] |
Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022 |
[18] |
Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295 |
[19] |
Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 |
[20] |
Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]