The orbital stability of peakons and hyperbolic periodic peakons for the Camassa-Holm equation has been established by Constantin and Strauss in [A. Constantin, W. Strauss, Comm. Pure. Appl. Math. 53 (2000) 603-610] and Lenells in [J. Lenells, Int. Math. Res. Not. 10 (2004) 485-499], respectively. In this paper, we prove the orbital stability of the elliptic periodic peakons for the modified Camassa-Holm equation. By using the invariants of the equation and controlling the extrema of the solution, it is demonstrated that the shapes of these elliptic periodic peakons are stable under small perturbations in the energy space. Throughout the paper, the theory of elliptic functions and elliptic integrals is used in the calculation.
Citation: |
[1] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Second edition, Die Grundlehren der mathematischen Wissenschaften, Band 67 Springer-Verlag, New York-Heidelberg, 1971.
![]() ![]() |
[2] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.![]() ![]() ![]() |
[3] |
R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.
doi: 10.1016/S0065-2156(08)70254-0.![]() ![]() |
[4] |
R. M. Chen, X. C. Liu, Y. Liu and C. Z. Qu, Stability of the Camassa-Holm peakons in the dynamics of a shallow-water-type system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 34, 22 pp.
doi: 10.1007/s00526-016-0972-0.![]() ![]() ![]() |
[5] |
R. M. Chen, J. Lenells and Y. Liu, Stability of the $\mu$-Camassa-Holm Peakons, J. Nonlinear Sci., 23 (2013), 97-112.
doi: 10.1007/s00332-012-9141-6.![]() ![]() ![]() |
[6] |
A. Chen, T. Deng and W. Huang, Orbital stability of trigonometric periodic peakons for the modified Camassa-Holm equation, Preprint, 2019.
![]() |
[7] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586.![]() ![]() ![]() |
[8] |
A. Constantin, Global existence of solutions and wave breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble)., 50 (2000), 321-362.
![]() |
[9] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa., 26 (1998), 303-328.
![]() ![]() |
[10] |
A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.![]() ![]() ![]() |
[11] |
A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation, Phys. D, 157 (2001), 75-89.
doi: 10.1016/S0167-2789(01)00298-6.![]() ![]() ![]() |
[12] |
A. Darós and L. K. Arruda, On the instability of elliptic traveling wave solutions of the modified Camassa-Holm equation, J. Differential Equeations, 266 (2019), 1946-1968.
doi: 10.1016/j.jde.2018.08.017.![]() ![]() ![]() |
[13] |
K. El. Dika and L. Molinet, Stability of multipeakons, Ann. Inst. H. Poincaré Anal. Non Linéaire., 26 (2009), 1517-1532.
doi: 10.1016/j.anihpc.2009.02.002.![]() ![]() ![]() |
[14] |
B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Backlund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.
doi: 10.1016/0167-2789(81)90004-X.![]() ![]() ![]() |
[15] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9.![]() ![]() ![]() |
[16] |
Z. H. Guo, X. C. Liu, X. X. Liu and C. Z. Qu, Stability of peakons for the generalized modified Camassa-Holm equation, J. Differential Equations, 266 (2019), 7749-7779.
doi: 10.1016/j.jde.2018.12.014.![]() ![]() ![]() |
[17] |
S. Hakkaev, I. D. Iliev and K. Kirchev, Stability of periodic travelling shallow-water waves determined by Newton's equation, J. Phys. A: Math. Theor., 41 (2008), 085203, 31 pp.
doi: 10.1088/1751-8113/41/8/085203.![]() ![]() ![]() |
[18] |
D. D. Holm and M. F. Staley, Wave structure and nonlinear balance in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380.
doi: 10.1137/S1111111102410943.![]() ![]() ![]() |
[19] |
B. Khesin, J. Lenells and G. Misiolek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann., 342 (2008), 617-656.
doi: 10.1007/s00208-008-0250-3.![]() ![]() ![]() |
[20] |
J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151-163.
doi: 10.2991/jnmp.2004.11.2.2.![]() ![]() ![]() |
[21] |
J. Lenells, Stability of periodic peakons, Int. Math. Res. Not., (2004), 485–499.
doi: 10.1155/S1073792804132431.![]() ![]() ![]() |
[22] |
J. Lenells, G. Misiolek and F. Tiǧlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, Comm. Math. Phys., 299 (2010), 129-161.
doi: 10.1007/s00220-010-1069-9.![]() ![]() ![]() |
[23] |
Z. W. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009), 125-146.
doi: 10.1002/cpa.20239.![]() ![]() ![]() |
[24] |
X. C. Liu, Y. Liu and C. Z. Qu, Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.
doi: 10.1016/j.aim.2013.12.032.![]() ![]() ![]() |
[25] |
X. C. Liu, L. Yue and C. Z. Qu, Stability of peakons for the Novikov equation, J. Math. Pure Appl., 101 (2014), 17-187.
doi: 10.1016/j.matpur.2013.05.007.![]() ![]() ![]() |
[26] |
Y. Liu, C. Z. Qu and Y. Zhang, Stability of periodic peakons for the modified $\mu$-Camassa-Holm equation, Phy. D, 250 (2013), 66-74.
doi: 10.1016/j.physd.2013.02.001.![]() ![]() ![]() |
[27] |
C. Z. Qu, X. C. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322 (2013), 967-997.
doi: 10.1007/s00220-013-1749-3.![]() ![]() ![]() |
[28] |
C. Z. Qu, Y. Zhang, X. C. Liu and Y. Liu, Orbital stability of periodic peakons to a generalized $\mu$-Camassa-Holm equation, Arch. Rational Mech. Anal., 211 (2014), 593-617.
doi: 10.1007/s00205-013-0672-2.![]() ![]() ![]() |
[29] |
Y. Wang and L. X. Tian, Stability of periodic peakons for the Novikov equation, (2018), arXiv: 1811.05835.
![]() |
[30] |
J. L. Yin, L. X. Tian and X. H. Fan, Stability of negative solitary waves for an integrable modified Camassa-Holm equation, J. Math. Phys., 51 (2010), 053515, 6 pp.
doi: 10.1063/1.3407598.![]() ![]() ![]() |
(a) Phase portrait of the system (2.5) (b) The algebraic curve defined by H(φ, y) = 0
The profile of elliptic periodic peakon for c = 1