March  2020, 40(3): 1775-1798. doi: 10.3934/dcds.2020093

Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy

Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China

* Corresponding author: Anthony Suen

Received  July 2019 Published  December 2019

We study the low-energy solutions to the 3D compressible Navier-Stokes-Poisson equations. We first obtain the existence of smooth solutions with small $ L^2 $-norm and essentially bounded densities. No smallness assumption is imposed on the $ H^4 $-norm of the initial data. Using a compactness argument, we further obtain the existence of weak solutions which may have discontinuities across some hypersurfaces in $ \mathbb R^3 $. We also provide a blow-up criterion of solutions in terms of the $ L^\infty $-norm of density.

Citation: Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093
References:
[1]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113.  doi: 10.1080/03605300008821542.

[2]

P. Degond, Mathematical modelling of microelectronics semiconductor devices, Some Current Topics on Nonlinear Conservation Laws, AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 15 (2000), 77-110. 

[3]

D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem, Quart. Appl. Math., 61 (2003), 345-361.  doi: 10.1090/qam/1976375.

[4]

D. Donatelli and K. Trivisa, From the dynamics of gaseous stars to the incompressible euler equations, J. Differential Equations, 245 (2008), 1356-1385.  doi: 10.1016/j.jde.2008.05.018.

[5]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.

[6]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns., 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[7]

D. Hoff, Compressible flow in a half-space with navier boundary conditions, J. Math. Fluid Mech., 7 (2005), 315-338.  doi: 10.1007/s00021-004-0123-9.

[8]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760.  doi: 10.1137/040618059.

[9]

H.-L. LiA. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $ \mathbb R^3$, Arch. Ration. Mech. Anal., 196 (2010), 681-713.  doi: 10.1007/s00205-009-0255-4.

[10]

J. Li and A. Matsumura, On the Navier-Stokes equations for three-dimensional compressible barotropic flow subject to large external potential forces with discontinuous initial data, J. Math. Pures Appl. (9), 95 (2011), 495–512. doi: 10.1016/j.matpur.2010.12.002.

[11]

J. Lin, J. Zhang and J. Zhao, On the motion of three-dimensional compressible isentropic flows with large external potential forces and vacuum, arXiv: 1111.2114.

[12]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.

[13]

A. Matsumura and T. Nishida, The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.

[14]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.

[15]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.

[16]

A. Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst., 33 (2013), 3791-3805.  doi: 10.3934/dcds.2013.33.3791.

[17]

A. Suen, Global solutions of the Navier-Stokes equations for isentropic flow with large external potential force, Z. Angew. Math. Phys., 64 (2013), 767-784.  doi: 10.1007/s00033-012-0263-3.

[18]

A. Suen, Existence of global weak solution to Navier-Stokes equations with large external potential force and general pressure, Math. Methods Appl. Sci., 37 (2014), 2716-2727.  doi: 10.1002/mma.3012.

[19]

A. Suen, Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations, J. Diff. Eqns., (2019). doi: 10.1016/j.jde.2019.09.037.

[20]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics, Arch. Rational Mechanics Ana., 205 (2012), 27-58.  doi: 10.1007/s00205-012-0498-3.

[21]

Y. Z. SunC. Wang and Z. F. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.  doi: 10.1016/j.matpur.2010.08.001.

[22]

Y. H. Zhang and Z. Tan, On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow, Math. Methods Appl. Sci., 30 (2007), 305-329.  doi: 10.1002/mma.786.

[23]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113.  doi: 10.1080/03605300008821542.

[2]

P. Degond, Mathematical modelling of microelectronics semiconductor devices, Some Current Topics on Nonlinear Conservation Laws, AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 15 (2000), 77-110. 

[3]

D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem, Quart. Appl. Math., 61 (2003), 345-361.  doi: 10.1090/qam/1976375.

[4]

D. Donatelli and K. Trivisa, From the dynamics of gaseous stars to the incompressible euler equations, J. Differential Equations, 245 (2008), 1356-1385.  doi: 10.1016/j.jde.2008.05.018.

[5]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.

[6]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns., 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[7]

D. Hoff, Compressible flow in a half-space with navier boundary conditions, J. Math. Fluid Mech., 7 (2005), 315-338.  doi: 10.1007/s00021-004-0123-9.

[8]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760.  doi: 10.1137/040618059.

[9]

H.-L. LiA. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $ \mathbb R^3$, Arch. Ration. Mech. Anal., 196 (2010), 681-713.  doi: 10.1007/s00205-009-0255-4.

[10]

J. Li and A. Matsumura, On the Navier-Stokes equations for three-dimensional compressible barotropic flow subject to large external potential forces with discontinuous initial data, J. Math. Pures Appl. (9), 95 (2011), 495–512. doi: 10.1016/j.matpur.2010.12.002.

[11]

J. Lin, J. Zhang and J. Zhao, On the motion of three-dimensional compressible isentropic flows with large external potential forces and vacuum, arXiv: 1111.2114.

[12]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.

[13]

A. Matsumura and T. Nishida, The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.

[14]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.

[15]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.

[16]

A. Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst., 33 (2013), 3791-3805.  doi: 10.3934/dcds.2013.33.3791.

[17]

A. Suen, Global solutions of the Navier-Stokes equations for isentropic flow with large external potential force, Z. Angew. Math. Phys., 64 (2013), 767-784.  doi: 10.1007/s00033-012-0263-3.

[18]

A. Suen, Existence of global weak solution to Navier-Stokes equations with large external potential force and general pressure, Math. Methods Appl. Sci., 37 (2014), 2716-2727.  doi: 10.1002/mma.3012.

[19]

A. Suen, Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations, J. Diff. Eqns., (2019). doi: 10.1016/j.jde.2019.09.037.

[20]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics, Arch. Rational Mechanics Ana., 205 (2012), 27-58.  doi: 10.1007/s00205-012-0498-3.

[21]

Y. Z. SunC. Wang and Z. F. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.  doi: 10.1016/j.matpur.2010.08.001.

[22]

Y. H. Zhang and Z. Tan, On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow, Math. Methods Appl. Sci., 30 (2007), 305-329.  doi: 10.1002/mma.786.

[23]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[1]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013

[2]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Jeongho Kim, Weiyuan Zou. Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes equations in the whole domain. Kinetic and Related Models, 2020, 13 (3) : 623-651. doi: 10.3934/krm.2020021

[5]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[6]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[7]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[8]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[9]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[10]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[11]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[12]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[13]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[14]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[15]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[16]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[17]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[18]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[19]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[20]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (279)
  • HTML views (104)
  • Cited by (0)

Other articles
by authors

[Back to Top]