\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy

  • * Corresponding author: Anthony Suen

    * Corresponding author: Anthony Suen
Abstract Full Text(HTML) Related Papers Cited by
  • We study the low-energy solutions to the 3D compressible Navier-Stokes-Poisson equations. We first obtain the existence of smooth solutions with small $ L^2 $-norm and essentially bounded densities. No smallness assumption is imposed on the $ H^4 $-norm of the initial data. Using a compactness argument, we further obtain the existence of weak solutions which may have discontinuities across some hypersurfaces in $ \mathbb R^3 $. We also provide a blow-up criterion of solutions in terms of the $ L^\infty $-norm of density.

    Mathematics Subject Classification: Primary: 35Q30; Secondary: 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113.  doi: 10.1080/03605300008821542.
    [2] P. Degond, Mathematical modelling of microelectronics semiconductor devices, Some Current Topics on Nonlinear Conservation Laws, AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 15 (2000), 77-110. 
    [3] D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem, Quart. Appl. Math., 61 (2003), 345-361.  doi: 10.1090/qam/1976375.
    [4] D. Donatelli and K. Trivisa, From the dynamics of gaseous stars to the incompressible euler equations, J. Differential Equations, 245 (2008), 1356-1385.  doi: 10.1016/j.jde.2008.05.018.
    [5] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.
    [6] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns., 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.
    [7] D. Hoff, Compressible flow in a half-space with navier boundary conditions, J. Math. Fluid Mech., 7 (2005), 315-338.  doi: 10.1007/s00021-004-0123-9.
    [8] D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760.  doi: 10.1137/040618059.
    [9] H.-L. LiA. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $ \mathbb R^3$, Arch. Ration. Mech. Anal., 196 (2010), 681-713.  doi: 10.1007/s00205-009-0255-4.
    [10] J. Li and A. Matsumura, On the Navier-Stokes equations for three-dimensional compressible barotropic flow subject to large external potential forces with discontinuous initial data, J. Math. Pures Appl. (9), 95 (2011), 495–512. doi: 10.1016/j.matpur.2010.12.002.
    [11] J. Lin, J. Zhang and J. Zhao, On the motion of three-dimensional compressible isentropic flows with large external potential forces and vacuum, arXiv: 1111.2114.
    [12] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.
    [13] A. Matsumura and T. Nishida, The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.
    [14] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.
    [15] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.
    [16] A. Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst., 33 (2013), 3791-3805.  doi: 10.3934/dcds.2013.33.3791.
    [17] A. Suen, Global solutions of the Navier-Stokes equations for isentropic flow with large external potential force, Z. Angew. Math. Phys., 64 (2013), 767-784.  doi: 10.1007/s00033-012-0263-3.
    [18] A. Suen, Existence of global weak solution to Navier-Stokes equations with large external potential force and general pressure, Math. Methods Appl. Sci., 37 (2014), 2716-2727.  doi: 10.1002/mma.3012.
    [19] A. Suen, Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations, J. Diff. Eqns., (2019). doi: 10.1016/j.jde.2019.09.037.
    [20] A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics, Arch. Rational Mechanics Ana., 205 (2012), 27-58.  doi: 10.1007/s00205-012-0498-3.
    [21] Y. Z. SunC. Wang and Z. F. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.  doi: 10.1016/j.matpur.2010.08.001.
    [22] Y. H. Zhang and Z. Tan, On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow, Math. Methods Appl. Sci., 30 (2007), 305-329.  doi: 10.1002/mma.786.
    [23] W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.
  • 加载中
SHARE

Article Metrics

HTML views(268) PDF downloads(296) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return