In 3-dimensional manifolds, we prove that generically in $ \operatorname{Diff}^{1}_{m}(M^{3}) $, the existence of a minimal expanding invariant foliation implies stable Bernoulliness.
Citation: |
[1] |
F. Abdenur, C. Bonatti and S. Crovisier, Nonuniform hyperbolicity for $\mathcal{C}^1$-generic diffeomorphisms, Israel Journal of Mathematics, 183 (2011), 1-60.
doi: 10.1007/s11856-011-0041-5.![]() ![]() ![]() |
[2] |
F. Abdenur and S. Crovisier, Transitivity and topological mixing for $C^1$ diffeomorphisms, Essays in Mathematics and its Applications, Springer, Heidelberg, (2012), 1–16.
doi: 10.1007/978-3-642-28821-0_1.![]() ![]() ![]() |
[3] |
D. V. Anosov, Geodesic Flows on Closed Riemann Manifolds with Negative Ccurvature, American Mathematical Society, Providence, R.I. 1969
![]() ![]() |
[4] |
D. V. Anosov and Y. G. Sinai, Some smooth ergodic systems, Uspehi Mat. Nauk, 22 (1967), 107-172.
![]() ![]() |
[5] |
A. Avila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Transactions of the American Mathematical Society, 364 (2012), 2883-2907.
doi: 10.1090/S0002-9947-2012-05423-7.![]() ![]() ![]() |
[6] |
A. Avila, S. Crovisier and A. Wilkinson, Diffeomorphisms with positive metric entropy, Publ. Math. Inst. Hautes Ëtudes Sci., 124 (2016), 319-347.
doi: 10.1007/s10240-016-0086-4.![]() ![]() ![]() |
[7] |
A. Avila, S. Crovisier and A. Wilkinson, $C^1$ density of stable ergodicity, (2017).
![]() |
[8] |
J. Bochi, Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 22 (2002), 1667-1696.
doi: 10.1017/S0143385702001165.![]() ![]() ![]() |
[9] |
C. Bonatti and S. Crovisier, Récurrence et généricité, Inventiones Mathematicae, 158 (2004), 33-104.
doi: 10.1007/s00222-004-0368-1.![]() ![]() ![]() |
[10] |
C. Bonatti, L. J. Díaz and E. R. Pujals, A c1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Annals of Mathematics, 158 (2003), 355-418.
doi: 10.4007/annals.2003.158.355.![]() ![]() ![]() |
[11] |
C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel Journal of Mathematics, 115 (2000), 157-193.
doi: 10.1007/BF02810585.![]() ![]() ![]() |
[12] |
L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math., 183 (1999), 1-43.
doi: 10.1007/BF02392945.![]() ![]() ![]() |
[13] |
M. Grayson, C. Pugh and M. Shub, Stably ergodic diffeomorphisms, The Annals of Mathematics, 140 (1994), 295-329.
doi: 10.2307/2118602.![]() ![]() ![]() |
[14] |
E. Hopf, Statistik der geod tischen linien in mannigfaltigkeiten negativer krümmung, Berichten der S chsischen Akademie der Wissenschaften zu Leipzi, 91 (1939), 261-304.
![]() ![]() |
[15] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Hautes Études Sci. Publ. Math., (1980), 137–173.
![]() ![]() |
[16] |
R. Mañé, Oseledec's theorem from the generic viewpoint, Proceedings of the International Congress of Mathematicians, PWN, Warsaw, 1/2 (1984), 1269-1276.
![]() ![]() |
[17] |
D. Obata, On the stable ergodicity of diffeomorphisms with dominated splitting, Nonlinearity, 32 (2019), 445-463.
doi: 10.1088/1361-6544/aaea93.![]() ![]() ![]() |
[18] |
J. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-114.
![]() ![]() |
[19] |
C. Pugh and M. Shub, Stable ergodicity and partial hyperbolicity, International Conference on Dynamical Systems, Pitman Res. Notes Math. Ser., Longman, Harlow, 362 (1996), 182-187.
![]() ![]() |
[20] |
C. C. Pugh, The ${C^{1+\alpha}}$ hypothesis in Pesin theory, Inst. Hautes Études Sci. Publ. Math., (1984), 143–161.
![]() ![]() |
[21] |
J. Rodriguez Hertz, Genericity of nonuniform hyperbolicity in dimension 3, Journal of Modern Dynamics, 6 (2012), 121-138.
doi: 10.3934/jmd.2012.6.121.![]() ![]() ![]() |
[22] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and nonuniform hyperbolicity, Duke Mathematical Journal, 160 (2011), 599-629.
doi: 10.1215/00127094-1444314.![]() ![]() ![]() |
[23] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Inventiones Mathematicae, 172 (2008), 353-381.
doi: 10.1007/s00222-007-0100-z.![]() ![]() ![]() |
[24] |
A. Tahzibi, Stably ergodic diffeomorphisms which are not partially hyperbolic, Israel Journal of Mathematics, 142 (2004), 315-344.
doi: 10.1007/BF02771539.![]() ![]() ![]() |
[25] |
A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow, Ergodic Theory and Dynamical Systems, 18 (1998), 1545-1587.
doi: 10.1017/S0143385798117984.![]() ![]() ![]() |