-
Previous Article
Global weak solutions to Landau-Lifshtiz systems with spin-polarized transport
- DCDS Home
- This Issue
-
Next Article
Minimality and stable Bernoulliness in dimension 3
Long-time behavior for a class of weighted equations with degeneracy
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China |
In this paper we study the existence and some properties of the global attractors for a class of weighted equations when the weighted Sobolev space $ H_0^{1,a}(\Omega) $ (see Definition 1.1) cannot be bounded embedded into $ L^2(\Omega) $. We claim that the dimension of the global attractor is infinite by estimating its lower bound of $ Z_2 $-index. Moreover, we prove that there is an infinite sequence of stationary points in the global attractor which goes to 0 and the corresponding critical value sequence of the Lyapunov functional also goes to 0.
References:
[1] |
C. T. Anh and P. Q. Hung,
Global attractors for a class of degenerate parabolic equations, Acta Mathematica Vietnamica, 34 (2009), 213-231.
|
[2] |
C. T. Anh, N. M. Chuong and T. D. Ke,
Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations, J. Math. Anal. Appl., 363 (2010), 444-453.
doi: 10.1016/j.jmaa.2009.09.034. |
[3] |
C. T. Anh and T. D. Ke,
Long-time behavior for quasilinear parabolic equations involving weighted $p$-Laplacian operators, Nonlinear Anal., 71 (2009), 4415-4422.
doi: 10.1016/j.na.2009.02.125. |
[4] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland Publishing Co., Amsterdam, 1992. |
[5] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404. |
[6] |
M. Efendiev and S. Zelik,
Finite- and infinite-dimensional attractors for porous media equations, Proc. London Math. Soc. (3), 96 (2008), 51-57.
doi: 10.1112/plms/pdm026. |
[7] |
M. A. Efendiev and M. Ôtani,
Infinte-dimensional attractors for parabolic equations with $p$-Laplacian in heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 565-582.
doi: 10.1016/j.anihpc.2011.03.006. |
[8] |
M. Efendiev, A. Miranville and S. Zelik,
Infinite-dimensional exponetial attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1107-1129.
doi: 10.1098/rspa.2003.1182. |
[9] |
M. Efendiev,
Infinite-dimensional exponetial attractors for fourth-order nonlinear parabolic equations in unbounded domains, Math. Meth. Appl. Sci., 34 (2011), 939-949.
doi: 10.1002/mma.1412. |
[10] |
J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 1984.
doi: 10.1007/0-387-22896-9_9. |
[11] |
B. R. Hunt and V. Y. Kaloshin,
Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275.
doi: 10.1088/0951-7715/12/5/303. |
[12] |
N. I. Karachalios and N. B. Zographopoulos,
Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys., 56 (2005), 11-30.
doi: 10.1007/s00033-004-2045-z. |
[13] |
N. I. Karachalios and N. B. Zographopoulos,
On the dynamics of a degenerate parabolic equation global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.
doi: 10.1007/s00526-005-0347-4. |
[14] |
N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations, Nonlinear Anal., 63 (2005), e1749–e1768.
doi: 10.1016/j.na.2005.03.022. |
[15] |
F. Li, B. You and C. K. Zhong,
Multiple equilibrium points in global attractors for some $p$-Laplacian equations, Applicable Analysis, 97 (2018), 1591-1599.
doi: 10.1080/00036811.2017.1322199. |
[16] |
A. Miranville and S. Zelik,
Finite-dimensionality of attractors for degeneare equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.
doi: 10.1088/0951-7715/20/8/001. |
[17] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0. |
[18] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[19] |
B. You, F. Li and C. K. Zhong,
The existence of multiple equilibrium points in a global attractor for some $p$-Laplacian equation, J. Math. Anal. Appl., 418 (2014), 626-637.
doi: 10.1016/j.jmaa.2014.03.089. |
[20] |
J. Zhang, C. K. Zhong and B. You,
The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems Ⅱ, Nonlinear Anal. Real World Appl., 36 (2017), 44-55.
doi: 10.1016/j.nonrwa.2017.01.002. |
[21] |
C. K. Zhong and W. S. Niu,
On the $Z_2$ index of the global attractor for a class of $p$-Laplacian equations, Nonlinear Anal., 73 (2010), 3698-3704.
doi: 10.1016/j.na.2010.07.022. |
[22] |
C. K. Zhong, B. You and R. Yang,
The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems, Nonlinear Anal. Real World Appl., 19 (2014), 31-44.
doi: 10.1016/j.nonrwa.2014.02.008. |
show all references
References:
[1] |
C. T. Anh and P. Q. Hung,
Global attractors for a class of degenerate parabolic equations, Acta Mathematica Vietnamica, 34 (2009), 213-231.
|
[2] |
C. T. Anh, N. M. Chuong and T. D. Ke,
Global attractors for the m-semiflow generated by a quasilinear degenerate parabolic equations, J. Math. Anal. Appl., 363 (2010), 444-453.
doi: 10.1016/j.jmaa.2009.09.034. |
[3] |
C. T. Anh and T. D. Ke,
Long-time behavior for quasilinear parabolic equations involving weighted $p$-Laplacian operators, Nonlinear Anal., 71 (2009), 4415-4422.
doi: 10.1016/j.na.2009.02.125. |
[4] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland Publishing Co., Amsterdam, 1992. |
[5] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9780511526404. |
[6] |
M. Efendiev and S. Zelik,
Finite- and infinite-dimensional attractors for porous media equations, Proc. London Math. Soc. (3), 96 (2008), 51-57.
doi: 10.1112/plms/pdm026. |
[7] |
M. A. Efendiev and M. Ôtani,
Infinte-dimensional attractors for parabolic equations with $p$-Laplacian in heterogeneous medium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 565-582.
doi: 10.1016/j.anihpc.2011.03.006. |
[8] |
M. Efendiev, A. Miranville and S. Zelik,
Infinite-dimensional exponetial attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 1107-1129.
doi: 10.1098/rspa.2003.1182. |
[9] |
M. Efendiev,
Infinite-dimensional exponetial attractors for fourth-order nonlinear parabolic equations in unbounded domains, Math. Meth. Appl. Sci., 34 (2011), 939-949.
doi: 10.1002/mma.1412. |
[10] |
J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems-Geometric Theory, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 1984.
doi: 10.1007/0-387-22896-9_9. |
[11] |
B. R. Hunt and V. Y. Kaloshin,
Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275.
doi: 10.1088/0951-7715/12/5/303. |
[12] |
N. I. Karachalios and N. B. Zographopoulos,
Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys., 56 (2005), 11-30.
doi: 10.1007/s00033-004-2045-z. |
[13] |
N. I. Karachalios and N. B. Zographopoulos,
On the dynamics of a degenerate parabolic equation global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25 (2006), 361-393.
doi: 10.1007/s00526-005-0347-4. |
[14] |
N. I. Karachalios and N. B. Zographopoulos, Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations, Nonlinear Anal., 63 (2005), e1749–e1768.
doi: 10.1016/j.na.2005.03.022. |
[15] |
F. Li, B. You and C. K. Zhong,
Multiple equilibrium points in global attractors for some $p$-Laplacian equations, Applicable Analysis, 97 (2018), 1591-1599.
doi: 10.1080/00036811.2017.1322199. |
[16] |
A. Miranville and S. Zelik,
Finite-dimensionality of attractors for degeneare equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.
doi: 10.1088/0951-7715/20/8/001. |
[17] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0. |
[18] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[19] |
B. You, F. Li and C. K. Zhong,
The existence of multiple equilibrium points in a global attractor for some $p$-Laplacian equation, J. Math. Anal. Appl., 418 (2014), 626-637.
doi: 10.1016/j.jmaa.2014.03.089. |
[20] |
J. Zhang, C. K. Zhong and B. You,
The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems Ⅱ, Nonlinear Anal. Real World Appl., 36 (2017), 44-55.
doi: 10.1016/j.nonrwa.2017.01.002. |
[21] |
C. K. Zhong and W. S. Niu,
On the $Z_2$ index of the global attractor for a class of $p$-Laplacian equations, Nonlinear Anal., 73 (2010), 3698-3704.
doi: 10.1016/j.na.2010.07.022. |
[22] |
C. K. Zhong, B. You and R. Yang,
The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems, Nonlinear Anal. Real World Appl., 19 (2014), 31-44.
doi: 10.1016/j.nonrwa.2014.02.008. |
[1] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[2] |
Sergey Dashkovskiy, Oleksiy Kapustyan, Iryna Romaniuk. Global attractors of impulsive parabolic inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1875-1886. doi: 10.3934/dcdsb.2017111 |
[3] |
Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313 |
[4] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[5] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093 |
[6] |
Igor Chueshov, Alexander V. Rezounenko. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1685-1704. doi: 10.3934/cpaa.2015.14.1685 |
[7] |
Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic and Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729 |
[8] |
Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399 |
[9] |
Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275 |
[10] |
Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199 |
[11] |
Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152 |
[12] |
Grzegorz Siudem, Grzegorz Świątek. Diagonal stationary points of the bethe functional. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2717-2743. doi: 10.3934/dcds.2017117 |
[13] |
Francesco Grotto, Umberto Pappalettera. Gaussian invariant measures and stationary solutions of 2D primitive equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2683-2699. doi: 10.3934/dcdsb.2021154 |
[14] |
John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31 |
[15] |
Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243 |
[16] |
Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021 |
[17] |
V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115 |
[18] |
Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171 |
[19] |
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781 |
[20] |
J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]